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The high-frequency rheology of concentrated liquid charge-sta-
bilized dispersions has been measured using a surface-loaded tor-
sional resonator. The high-frequency shear moduli are extracted
from the measurement as a function of ionic strength and surface
acid content. A theory which enables the determination of the
effective surface charge of the concentrated dispersions is pre-
sented. At high ionic strengths the theory simplifies to an analytic
formula relating the effective surface charge to the high-frequency
limiting shear modulus in terms of an effective hard-sphere diame-
ter. The effective hard-sphere diameter is obtained experimentally
from the high concentration asymptote of the zero-shear viscosity.
The resulting effective surface charge increases with added electro-
lyte content in agreement with charge renormalization theory. The
effective charge also increases with added weak and strong surface
acid content. The method, which operates on concentrated disper-
sions, is found to yield effective charges that agree with dilute
measurements of the electrophoretic mobility. Moreover, the effec-
tive hard-sphere scaling reduces the high-frequency viscosity to a
master curve independent of salt content. © 1998 Academic Press

Key Words: suspensions; surface charge; charge renormaliza-
tion; rheology; concentrated dispersions.

INTRODUCTION

The surface charge density of colloidal particles in polar
media is an important quantity that often controls colloidal
stability (1), phase behavior (1-3), and both static and
dynamic properties (4, 5). Much effort has been invested
in developing experiments and theoretical treatments di-
rected at the reliable determination of the surface charge
or the surface potential. Most of the available methods for
determining the surface charge rely on measurements of a
single particle response, e.g., electrophoretic mobility (6,
7), or a response averaged over a dilute ensemble of parti-
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cles, e.g.,, conductivity (7) or electroacoustic spectroscopy
(8). Hence, these methods require operations at low particle
concentrations at which the simplified theoretical considera-
tions allow for conversion of the measurement to surface
charge or potential. Another simplification sometimes made
is using the linearized version of the Poisson—Boltzmann
equation in the analysis of various measurements, such as
small-angle scattering (9, 10), conductivity (11), and self-
diffusion (12). The proviso for using the simpler linear the-
ory 1s that the bare surface charge must be renormalized,
that is, replaced by an effective charge, smaller than the
bare charge (13—15). Consequently, discrepancies are found
between the charge determined by conductometric titration,
which yields the total surface charge, and the effective
charge resulting from analyses using the linear Poisson—
Boltzmann theory (16). In addition, one expects that the
effective charge will show some dependence on the type of
measurement used as well as on dispersion properties.

In many cases measurements under dilute conditions are
not practically realizable or even desirable. Variation of sur-
face properties with dilution is a concern when the results
from dilute measurements are extended to predict the behav-
for of concentrated dispersions. Also, the detailed composi-
tion of the solvent in concentrated industrial dispersions is
often unknown. Determination of the surface charge by di-
rect measurement of a concentrated dispersion is an attrac-
tive prospect, suggesting the possibility of designing proce-
dures for on-line characterization. It is the purpose of this
work to provide a method whereby an effective surface
charge can be obtained from a direct measurement of con-
centrated dispersions. We demonstrate how measurements
of the elastic shear modulus can be used to obtain the surface
charge of concentrated charge-stabilized dispersions. The
use of elastic shear moduli to provide information of particle
interactions is not a new concept (1, 17—24), but its exten-
sion to include concentrated liquid dispersions is. Further,
the method presented is general and can be extended to probe
other colloidal interactions. '
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CHARGE DETERMINATION IN CONCENTRATED DISPERSIONS

Colloidal liquids respond essentially as purely viscous ma-
terials at low frequencies. They acquire progressively more
solid-like character as the frequency is increased, usually
leading to a terminal high-frequency response. The response
is characterized by high (relative to the inverse structural
relaxation time (4, 5)) frequency shear elasticity and viscos-
ity. Statistical mechanics connects the high-frequency shear
modulus to the colloidal interaction potential (and the micro-
structure of the dispersion) (25, 26) and, hence, the surface
charge in charge-stabilized dispersions. This has been ex-
ploited in the past to study the interactions in dispersions
characterized by long relaxation times and/or high elasticity,
e.g., crystalline (18-21,27-29), glassy (17), or flocculated
(22, 30) dispersions. These studies employed mechanical
spectroscopy, which is well suited to investigations of con-
centrated colloidal dispersions. The instrumentation used in-
cludes shear wave velocity (19-21, 28) and shear wave
damping measurements (17, 18, 31, 32), as well as rotational
rheometry (23, 24). The measurement of the damping of
shear waves can be conducted in the surface loading regime,
where it is then sufficiently sensitive to cover the important
case of liquid, nonflocculated dispersions, e.g., hard-sphere
(33), adhesive hard-sphere (34), sterically stabilized (24),
and liquid charge-stabilized dispersions. These types of dis-
persions also show elasticity, though usually of smaller mag-
nitude than colloidal crystals or flocculated dispersions. Nev-
ertheless, at sufficiently high particle concentrations and fre-
quencies liquid dispersions show a measurable elasticity. We
note for completeness that the colloidal surface charge of
concentrated dispersions can be obtained from the analysis
of small-angle neutron scattering (9), a technique of limited
availability.

In this work we use high-frequency torsional resonance
oscillation to determine elastic shear moduli. Torsional reso-
nance oscillation was developed originally to study the vis-
coelastic behavior of polymer solutions (35, 36). In this
work we employ a particularly simple, commercially avail-
able torsional resonator. From the damping of an immersed
torsionally oscillating rod we obtain the elastic shear modu-
lus. To convert the measured modulus to a surface charge
we use previously derived statistical mechanical expressions,
coupled with a perturbation theory for the structure of the
concentrated dispersions. At high ionic strength the theory
reduces to an analytic formula, relating the elastic shear
modulus to the surface charge. The proposed formula is
the liquid analogue of a seties of relations that have found
widespread use for the case of ordered dispersions (23, 26,
28, 37). We test the method on well-characterized polymer
dispersions at high concentrations.

In the following, we first describe the model dispersions
and the instrumentation used. The theoretical analysis is then
presented and the simplifying approximations are stated and
analyzed. Results are presented, confirming the sensitivity
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of the measurement to the colloidal interaction potential.
The extracted surface charge is compared to resulis from
conventional techniques for determining the surface charge.
The comparison shows that the charge must be interpreted
as an effective charge, different from the total charge found
using conductometric titration, but in good agreement with
that obtained from electrophoretic mobility measurements
under dilute conditions.

EXPERIMENTAL

Dispersions

Poly (n-butyl-methacrylate) (PBMA) dispersions were
prepared by emulsion polymerization using sodium dodecyl
sulfate as emulsifier and sodinm persulfate as initiator. Some
of the dispersions were copolymerized with acrylic acid
(PBMA/AA), giving rise to weak (-COO™) in addition to
the strong (-0S07) acid surface groups derived from the
initiator. Purification of the dispersions proceeded by dial-
ysis against deionized water, followed by ion exchange
(Amberlyst IRN-150, Polysciences), and finally dialysis
against an electrolyte solution maintained at pH 6 and de-
sired ionic strength. The pH and ionic strength were regu-
Jated by addition of HCI/KOH (reagent grade, Fluka) and
KCl (reagent grade, Fluka). The final dialysis step was often
combined with a reverse osmosis step (dialysis under pres-
sure) to obtain more concentrated dispersions (27). This
procedure was found to result in lattices with reproducible
theological properties and no drift in conductivity with stor-
age time. The weight fraction of polymer in the dispersions
was determined by drying samples in vacuo for 24 h at
60°C. The weight fraction was then converted to a particle
yolume fraction by using the specific volume of the polymer
(1.063 g/cm’), determined using dilution density measure-
ments (Paar DMA40). Concentration series were prepared
by diluting the dispersions with the electrolyte solution used
as dialysate. This procedure results in a slight variation in
the dispersion ionic strength with particle concentration due
to the membrane equilibrium that exists between dispersion
and dialysate. This effect is accounted for self-consistently
in the data analysis.

The particle size was determined by dynamic light scatter-
ing. The size polydispersity was obtained from capillary
hydrodynamic fractionation (CHDF). The electrophoretic
mobility was measured using a Zetasizer 3000 (Malvern)
and was converted to an effective charge using Henry’s
equation (38), neglecting surface conductivity and double-
layer distortions. The total analytical surface charge was
determined by conductometric titration using NaOH/HCI as
titrant. The synthesized particles, their size, initiator content,
and titration charges are tabulated in Table 1.

All rheological measurements were conducted at 20°C,
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which is below the glass transition temperature of the PBMA
particles (~30°C). Zero-shear viscosities were obtained
from well-defined low-shear plateaus, found in steady shear
measurements using an RFSIT rheometer (Rheometrics).

Torsional Resonator

A commercially available torsional resonator (Rheos-
wing, Physica) with a particularly simple design was used
to measure the viscoelastic properties of the dispersions. As
shown in Fig. 1, the instrument consists of a torsionally
oscillating rod which is immersed in the dispersion. The
torsional motion is driven by a piezoelectrically excitable
crystal coupled to the rod. The resulting resonance frequency
is approximately wy /27 ~ 8.858 kHz in air at 20°C. The
torsional motion creates a damped shear wave in the liquid
medium that propagates a characteristic distance & (see Fig.
1), given for a plane wave by (35)

12 "2
5 = -—%; G+ G , ]
pw? G + 6" - G

where p is the liquid density, w is the frequency of oscilla-
tion, and G’ and G" are the shear storage and loss moduli,
respectively. For water, the solvent used in this study, the
typical penetration depth is 6 pm. This value sets the lower
boundary on § for the dispersions. In this study the particle
radii are ~40 nm and the shear wave extends at least 15
particle radii into the dispersion. Thus, the bulk dispersion
is probed by the instrument. To simplify the analysis we
conduct the torsional oscillation in the surface loading limit,
meaning that we use a gap width much greater than § so
that no reflections from the sample container wall occur. For
the most concentrated dispersions used in this study Eq. [1]
yields ~50 pm, which is far smaller than the 1000-um gap
width used.

Another concern is that the measurement be conducted in

TABLE 1
Characterization of Polymer Lattices: Particle Type, Particle
Radius (a), Size Polydispersity (s,/a), Weight Percentage Initiator,
and Titrated Charge Density

Particle a NaP$§ Qiitsation
type (nm) sda (Wt %) (uClem?)
PBMA/AA 43.5 0.14 0.40 3o.re
PBMAI 38 0.3 0.40 1.56
PBMA2 37 0.12 0.15 1.14
PBMA3 40 0.11 0.67 1.64

“ This number represents the weak acid surface charge density, No reli-
able estimate for the strong acid surface charge density could be obtained
due to the interference from the weak acid end point [68, 69].

®The high polydispersity is caused by a slight bimodality.
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FIG. 1. Schematic drawing of the Rheoswing torsional resonator, Also
shown is the penetration depth &, which is the characteristic radial distance
that the shear wave propagates away from the torsional rod.

the linear viscoelastic regime. The angular amplitude of the
torsional motion cannot be monitored or controlled using the
Rheoswing torsional resonator; therefore, we use an indirect
means of assessing whether the measurements are in the
linear regime. The maximum strain imposed on the liquid
by a plane propagating wave is given by

2
Vmax = Vman/ W = R001 ’\/—G—':i%ﬁ’ [2]

where 6, is the angular displacement amplitude and R is the
radius of the torsion rod. The maximum R, occurs at the
rod tip and is at most 50 nm according to the manufacturer
(Physica). This estimate yields maximum strains between
0.3 and 1% for the most and least viscoelastic dispersions in
this study, respectively. Typical colloidal liquids show linear
viscoelasticity when the strain is kept below 1% (39). More-
over, the linear regime broadens as the frequency of the
measurement is increased (39). Thus, for the frequencies of
interest here, the linear viscoelastic regime is being probed.

When the rod is immersed in a liquid, its motion is damped
due to the liquid’s impedance. This leads to a broadening of
the resonance curve (Aw) and a lowering of the resonance
frequency (w,) compared to a measurement in air. Both of
these effects are characteristic of the surrounding liquid, as
the motion of the rod depends on the liquid deformation and
hence the viscoelastic properties of the liquid. The real and
imaginary parts of the liquid impedance Z = R + iX are related
to the damping and frequency shift, respectively (35, 40),

R =K(Aw — Awy,)

X= Kz(wo.air - wO)’ [3]
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where K, and K, are calibration constants. The Rheoswing’s
mechanical quality factor w/Aw for water at 20°C is about
2000. As the penetration depth is small in relation to the
radius of the torsion rod, we expect that the curvature of the
rod will play a minor role. By including the leading order
curvature correction (41) in the analysis we have verified
that Z = Z, is indeed an excellent approximation for the
Rheoswing. Hete Z, = Ry + iX; is the mechanical imped-
ance of a planar wave front in the surface loading limit. The
components of the shear modulus are related to Z, via

G' = (Rf,l - Xﬁl)/P

G" = (2R Xu)! p. [4]

A series of Newtonian liquids, covering the viscosity range
1 < u < 80 mPa-s, were used to calibrate the Rheoswing
at 20°C according to Eq. [3]. The calibration constants were
found to be K, = 74.17 and K, = 128.6 kg/m?. An ideal
resonator would have K, = 2K, (42, 43).

For the ensuing theoretical analysis to be valid, we require
that the frequency of oscillation be high enough so that
the high-frequency rheology of the dispersions is measured.
More specifically, the timescale of diffusive colloidal motion
must be long compared to the times probed by the Rheos-
wing, or, stated equivalently

wl/2m > DS/ [5]

The characteristic frequency D/I* delineates the regime
where the structure of the concentrated dispersion can no
longer rearrange significantly in response to the oscillatory
strain field. It contains the short-time self-diffusion coeffi-
cient DE, which is the characteristic small displacement mo-
bility of a colloidal particle in the concentrated dispersion
(4, 5), and the mean interparticle separation . For a dilute
dispersion of 40-nm particles, using D3 ~ Dy, the bare
diffusion coefficient, and / ~ ¢ yields a frequency of approxi-
mately 3 kHz. This is nearly the resonance frequency of the
Rheoswing torsional resonator. Increasing particle concen-
tration will, however, decrease Dj strongly, suggesting that
the Rheoswing will probe the high-frequency limit at higher
particle concentrations. To ensure that the high-frequency
condition is achieved, we have performed some measure-
ments over a limited range of frequencies. The ~8.9-kHz
Rheoswing measurements were complemented by two addi-
tional frequencies obtained from measurements using the
electromagnetically driven torsional pendula at the Univer-
sity of Twente. The torsional pendula yielded two additional
frequencies: ~685 Hz and 2.33 kHz. The torsional pendula
have been described in detail previously (42, 43) and have
been shown to yield accurate results for a variety of colloidal
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dispersions (30, 33, 34). Figure 2 shows the frequency-
dependent dynamic viscosity, ' = G"/w, for PBMA disper-
sions of 40-nm-radius particles as a function of patticle vol-
ume fraction. The dynamic viscosity is seen to decrease with
increasing frequency at all concentrations. This trend results
from the decreasing (with increasing frequency) contribu-
tion to n' from the interparticle interactions and Brownian
motion (1). Though difficult to judge due to the limited
frequency range, the data appear to converge to a frequency-

independent 7. located at, or close to, the Rheoswing fre-
quency of ~8.9 kHz. When plotted against w ™"/, the scaling
found experimentally by van der Werff et al. (33), the dy-
namic viscosity data decrease sublinearly, indicating conver-
gence to a high-frequency plateau. Also shown in Fig. 2 is
a line representing the high-frequency viscosity for hard-
sphere dispersions,

1+%m1+¢—0m%%

Nal it = [6]

1 — (1 + ¢ —0.1899%) '

where ¢ is the particle volume fraction. This semi-empirical
formula was constructed by Lionberger and Russel (44, 45)
such that the exact dilute and concentrated hard-sphere limits
are satisfied, The dynamic viscosities in Fig. 2 lie well above
the hard-sphere behavior.

Figure 3 shows the dynamic storage modulus G' for the
same set of measurements as displayed in Fig. 2. Again, the
Rheoswing data obtained at ~8.9 kHz lie close to the ~2.3-
kHz data, indicating that a frequency of 8.9 kHz satisfies
the high-frequency requirement represented by Eq. [5].
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FIG. 2. Dynamic viscosity as a function of volume (raction and fre-
quency for PBMAL: a = 38 nm and [KCl] = 30 mM. The line represents
hard-sphere behavior (44).
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FIG. 3. Dynamic shear modulus as a function of volume fraction and
frequency for PBMAL: & = 38 nm and [KCI] = 30 mM.

THEORY

Interaction Potential

When polymer particles are dispersed in a polar medium,
they acquire charge due to the dissociation of the acidic
surface groups incorporated in the polymerization procedure.
The electrostatic potential in the ionic medium surrounding
the particle(s) is described by the Poisson—Boltzmann equa-
tion. Linearization of the Poisson-Boltzmann equation leads
to the analytic Debye-Hiickel single-sphere potential. Lin-
ear superposition of single-sphere potentials results in an
interaction potential (scaled by the temperature kT') of Yu-
kawa form (46)

Ka 2 —{xka)r
U ()T = (\/g Qe ) <
a l+ka r

where r is the center-to-center separation distance made di-
mensionless with the particle radius a. The Yukawa prefac-
tor for particles with constant surface charge Qe contains in
addition the Bjerrum length Ly = e?/4mekT (with e the
elementary charge and e the dielectric constant of the me-
dium) and the inverse Debye length «a. The inverse Debye
length, here made dimensionless with a, gauges the extent
of the electrical double layer and is, for a monovalent electro-
Iyte, given by

[7]

(m)2=4m2LB< e ) 8]

l-¢ 1-¢

where n are the number concentrations of free positive and
negative ions in the dispersion including counterions from
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dissociated surface chemical groups. The inclusion of the
factor (1 — ¢) 7" reflects the reduced volume available to
the added electrolyte and counter ions due to the presence
of the colloidal particles (1, 47, 48 ). In this work the disper-
sions are dialyzed and so the added electrolyte concentra-
tions n. depend on the Donnan membrane equilibrium (49)

U= - = learzicles + ( anﬂm‘ﬂes )2 + 9
l_¢ -+ (1_¢) \/ 2(1_¢) Hgars [ ]

WhEre Hpanicies and 1y, are the number concentrations of col-
loidal particles in the dispersion and of the salt in the dialysis
bath. Equations [8] and [9] together are consistent with
the linearized Poisson—Boltzmann theory, as the resulting
Debye length is equal to that derived by Russel and Benzing
(47). Note that «a is dependent on both the colloid charge
Q and the particle volume fraction ¢ through the charge
neutrality and excluded volume effect implicit in Egs. [8]
and [9].

The interaction potential in Eq. [7] is taken to describe
the electrostatic repulsion between the charged PBMA parti-
cles in this study, recognizing that Q is to be interpreted as
an effective charge (13-15). In addition to electrostatic
repulsion, we superpose the nonretarded, attractive van der
Waals free energy of interaction between spheres. The total
composite interaction potential assumes now the classical
DLVO form (50)

U(r) =Ya(r) + Upw(r) [10]
A 2 2 rt—4
\Ilvdw——g<r2_4+ﬁ+1n< 0 )) [11]

We have taken the Hamaker constant A = 1.05- 1072 ], the
value for PMMA (1), as an approximation for the PBMA
particles, For the small particles in this study the van der
Waals contribution to the total interaction potential is small,
but not negligible due to the high levels of added electrolyte.

Flastic Modulus

For isotropic molecular fluids with central forces Zwanzig
and Mountain (23) derived the relationship between the
high-frequency elastic shear modulus G/, and the interaction
potential. This expression is given in dimensionless form as

o & ( d\If(r)/kT)’ [12]

drg
KT~ 47 4O7rf ar

where g(r) is the radial distribution function that describes
positional correlations among particles in the equilibrium
fluid. For colloidal dispersions the same formula results
when the hydrodynamic interactions among particles are ne-
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glected (26, 44). This hydrodynamic coupling is a secondary
effect for the elastic shear modulus (of non-hard-sphere flu-
ids), but i3 important for dissipative properties such as the
shear and high-frequency viscosities. When hydrodynamic
interactions are included in the analysis, additional hydrody-
namic functions appear that are difficult to evaluate (44, 45,
51). In the present analysis we neglect the hydrodynamic
interactions and the starting point is then Eq. [12].

To justify neglecting the hydrodynamic interactions in this
particular study, we refer to the computer simulations done
by Bossis et al. (52) and the scaling analysis done by Lion-
berger and Russel (44, 45). They have shown that as the
particle concentration is increased the long-range nature of
the (conditionally averaged) hydrodynamic functions that
appear in the expression for the shear modulus is suppressed;
that is, the hydrodynamic interactions act mainly in a lubrica-
tion region near the particles. As the particles in this study
are electrostatically stabilized, this near field region is not
likely to be sampled, so it is reasonable to neglect the effect
of hydrodynamic interactions on G.. entirely.

In principle, Eq. [12] can be used directly to determine
the surface charge; however, solving Eq. [12] for the surface
charge requires integration and also iteration. The latter is
a consequence of the implicit dependence of the radial distri-
bution function on the interaction potential and accordingly
on the surface charge. Moreover, the radial distribution func-
tion for non-hard-sphere colloids is generally cumbersome to
calculate. We seek to circumvent calculation of the complete
radial distribution function and to construct a simplified
model based on perturbation theory to provide a direct route
for determining the surface charge from a measurement of
the elastic shear modulus. Such simple, analytical relations
have been obtained for the special case of ordered disper-
sions assuming that only nearest neighbor particle interac-
tions contribute to the elasticity. For liquid dispersions parti-
cle positions are not as strongly localized and the characteris-
tic disordered structure must be taken into account. As shown
in the Appendix, by appealing to first-order perturbation
theory, the simple relationship

a® 3¢ 3¢’
o &3, %7; D' gs(2: der)F(Dar)

A 13
kT 4rw [13]

is obtained for thin double layers, where F(Dg) = —
dU(r)/kT/dr|,-p,, is the force law evaluated at a dimen-
sionless effective hard-sphere diameter: Dy = 2(ber/)'".
This effective hard-sphere diameter accounts for the extra
excluded volume among particles due to their charged na-
ture. Note that this expression differs significantly from pre-
viously derived formulas suited to ordered dispersions (23,
26, 28, 37). When the interaction potential is specified, the

above formula is fully analytic since the hard-sphere radial
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distribution function at contact is related simply to the virial
equation of state. We use the following form for the contact
value of the hard-sphere radial distribution function:

1 —d/2
(1-¢)°
1121 + ¢
4¢p 0.64 —

0< <05
(14]
05 < ¢ < 0.64.

&s(2; @) =

For volume fractions below 0.5 this is the well-known Carna-
han—Starling (53) expression, while above 0.5 the divergent
form agrees with computer simulations of disordered hard-
sphere dispersions (54).

The dispersions in this study are complicated multicompo-
nent systems consisting of charged macroparticles with ac-
companying counter ions and added electrolyte. Despite this
complexity, we describe these dispersions with a simple
hard-sphere model. The model derived for the shear modulus
(Eq. [13]) is based on the idea that the most important
feature of the colloidal structure is the location of the first
correlation peak in the radial distribution function. An effec-
tive hard-sphere radial distribution function is defined and
parametrized by Dy, the effective hard-sphere diameter.
This effective hard-sphere structure is used to model the true
structure of the charged-sphere system by shifting the gy (r)
a distance D,y — 2, leading to a correspondence in peak
position.

The effective hard-sphere diameter D is defined here by
mapping the divergence in the zero-shear viscosity onto that
of hard spheres. Although alternative experimental methods
exist (55, 56), as well as statistical mechanical treatments
(57), a rheological method is chosen, as the mapping is
being used for modeling rheological properties. The zero-
shear viscosity of all the dispersions used here is well de-
scribed in the concentrated regime by the phenomenological
Quemada equation (58)

770//“5 = (1 - (fb/(bmnx)‘za [15]
where @, is an effective maximum packing fraction. This
relation has been used to model successfully both charged-
(1) and hard-sphere dispersions (59-61) over large ranges
of volume fraction. The maximum packing fraction is ex-
tracted from the linear high concentration asymptote of an
75" vs ¢ plot, as the intercept of the abscissa. The cffective
hard-sphere diameter (scaled by the particle radius ) is then
identified from the scaling relation, Dyy = 2 (b /a) '

where ¢!, is the volume fraction at which the hard-sphere

viscosity diverges. Although ¢, is often taken as 0.64, the
random close packing fraction, experiments on hard-sphere

dispersions have shown that ¢, lies in the range 0.58-

0.64 (55, 56). We take ¢, = 0.61 in accordance with
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Marshall and Zukoski (60). The zero-shear viscosities were
extracted from well-defined Newtonian low-shear plateaus,
an example of which is shown in Fig. 4, present in steady
shear flow curves.

Once the effective hard-sphere diameter has been deter-
mined we can proceed with the evaluation of the surface
charge from the shear modulus measurements. The interac-
tion potential is substituted into the G model (Eq. [13]).
The result is a nonlinear equation for the surface charge
because the inverse Debye length depends on the surface
charge (see Eq. [8]). This effect is brought about because
the number of counter ions in solution depends on the macro-
particle charge through charge neutrality (1, 17, 62). As a
consequence, the procedure for calculating the model G, is
lterative, requiring initial estimates for the effective surface
charge Q before G can be calculated.

Since the surface charge is the only unknown parameter
in the G model, Q can in principle be extracted from a
single G measurement. To provide more confidence in the
analysis we have measured G for concentration series, ob-
tained by diluting stock dispersions with electrolyte solution.
As the surface charge is unknown a priori, the ionic strength
cannot be kept constant with concentration. However, by
diluting stock dispersions with the same electrolyte solution
as dialyzed against, we find in our calculations only small
ionic strength variations with particle concentration (xa var-
ies by ~1% along a concentration series). The initial ionic
strength and Debye length are calculated from the Donnan
equilibrium (Egs. [8] and [9]). Values for lower particle
concentrations are calculated by accounting for the new elec-
trolyte added and the change in effective solvent volume due
to the dilution. All calculations are done assuming the surface
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FIG. 4. Shear viscosity as a function of shear rate for PBMA/AA

dispersions with & = 43.5 nm and [KCl] = 10 mM: (O) ¢ = 0.333, (0)
0.311, () 0296, (I>) 0.251, and (<) 0.220.
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FIG. 5. Determination of effective maximum packing fraction for
PBMA/AA dispersions with ¢ = 43.5 nm. From left to right: [KCI] = 10,
25, 40, and 50 mM. The lines are linear least-squares fits to the terminal
slopes of the data.

charge does not change with particle concentration, an as-
sumption supported by recent computer simulations (48).

RESULTS AND DISCUSSION

To determine the surface charge from the effective hard-
sphere model, the values of the effective hard-sphere diame-
ter were extracted from the low-shear-viscosity plateaus as
afunction of particle concentration. Typical results are shown
in Fig. 4 for PBMA/AA dispersions at [KCl] = 10 mM.
Figure 5 shows an example of the plots used to extract the
effective maximum packing fraction and the effective hard-
sphere diameter for the PBMA/AA dispersions. As seen, the
effective maximum packing fraction increases with increas-
ing ionic strength, consistent with increasing amounts of
added salt leading to stronger screening of the particle inter-
actions. The maximum packing fractions and the resulting
effective hard-sphere diameters are tabulated in Table 2.

The torsional resonator supplies, in addition to the shear
modulus, the high-frequency viscosity of the dispersions.
The data for the PBMA/AA dispersions are shown in Fig,
6 as functions of the dialysate ionic strength. The high-
frequency viscosity is seen to increase rather strongly with
decreasing ionic strength. At higher ionic strengths the data
appear to superpose. All the data sets show deviations from
hard-sphere behavior as given by Eq. [6]. To correlate these
high-frequency viscosities, we employ the effective hard-
sphere scaling as derived from the zero-shear viscosity.
Shown in Fig. 7 are the 7% for the PBMA and PRMA/AA
dispersions as functions of the effective hard-sphere volume
fraction e = ¢(Derr/2)”. The hard-sphere scaling serves
reasonably well to reduce the high-frequency viscosity data
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TABLE 2
Summary of Results: Particle Type, Radius, Dialysate Ionic
Strength, Weight Percentage Initiator, Effective Surface Charge
Density, Maximum Packing Volume Fraction, Effective Hard-
Sphere Diameter, and Reciprocal Debye Length

Particle a [KCI] NaPS q

type (nm) (mM) (wt%) (uClem®) me D ka
PBMAL 38 10 0.40 0.99 0359 2387 127
PBMA2 37 30 0.15 2.14 0408 2287 214
PBMAI 38 30 0.40 2.09 0410 2283 220
PBMA3 40 30 0.67 2,72 0410 2282 232
PBMALI 38 50 0.40 2.55 0.451 2212 283
PBMA/AA 435 10 0.40 1.25 0346 2415 147
PBMA/AA 435 25 0.40 2.76 0403 2297 23.1
PBMA/AA 435 40 0.40 3.31 0443 2224 291
PBMA/AA 4335 50 0.40 3.44 0.460 2.197 326

to a master curve. Hence, it should be possible to use the
high-frequency viscosity in the determination of the effective
hard-sphere diameter, eliminating the need for the zero-shear
viscosity measurements. The zero-shear viscosities are, how-
ever, orders of magnitude larger than the corresponding
high-frequency viscosities and provide a more reliable data-
base from which to extrapolate. Figure 7 also shows two
hard-sphere predictions, one due to Lionberger and Russel
(44) (see Eq. [6]) and the other,

nilu = (1 - ¢/0.64)7", [16]
due to Brady (51). The experimental data lie between the

predictions of the two models.
Figure 8 shows the shear moduli derived from the
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FIG. 6. High-frequency viscosity for PBMA/AA dispersions as a fune-
tion of volume fraction and ionic strength. The line represents hard-sphere
behavior (44).
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FIG.7. High-frequency viscosity as a function of effective hard-sphere
volume fraction ¢ = ¢(Dex/2), as labeled. The lines represent different
hard-sphere predictions.

Rheoswing measurements for the PBMA/AA dispersions
for varying particle volume fraction and ionic strength. The
shear modulus is seen to increase with increasing concentra-
tion and decreasing ionic strength. These trends are also
observed for the PBMA systems and for ordered dispersions
studied by others (17-19). The lines shown in Fig. 8 are
least-squares representations of the effective hard-sphere
model. We find that the model is able to reproduce the data.

As the surface charge is the only unknown quantity in
the G'&. model, the others being determined independently or
calculated internally in a consistent manner, it can be ex-

18 . 1 T ¥

[KCl]=10 mM
[KCl]=25 mM
{(KCl]=40 mM
[KClj=50 mM

*« DO O <

0%
0.7 03

055 04 0.4

FIG. 8. Dimensionless high-frequency shear modulus as a function of
the volume fraction for the PBMA/AA dispersions. The lines represent
least-squares fits of the effective hard-sphere model.
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FIG. 9. Surface charge density vs reciprocal Debye length for PRMA/
AA and PBMA dispersions, The lines are linear least-squares fits to the
data sets, yielding surface potentials of U5 = —78 mV for PBMA/AA and
$g = 56 mV for PBMA.

tracted as a function of the ionic strength. In Fig. 9 the
surface charge density is shown as a function of the recipro-
cal Debye length for the PBMA/AA and PBMA dispersions.
There it can be seen that the effective surface charge in-
creases with ionic strength or ka. This is the expected trend
for particles with weak acid surface groups and is a conse-
quence of the surface equilibrium (63); at higher ionic
strengths the added electrolyte provides a stronger screening
in the jonic medium, leading to a higher degree of surface
dissociation. As seen in Fig. 9 we observe a similar trend
for the PBMA dispersions which contain only strong acid
surface groups. At the pH at which these experiments were
conducted (pH 6) surface equilibrium is not expected to
influence the charge for these strong acid PBMA dispersions,
but an increasing charge density is nevertheless observed.
The fact that the surface charge densities for the PBMA
dispersions are generally lower than those for the PBMA/
AA is reassuring in light of the analytical charge found
from conductometric titration. As seen in Table 1 the titrated
charge for the PBMA/AA dispersions exceed those of the
PBMA dispersions by an order of magnitude due to the
presence of the weak acid surface groups derived from the
added acrylic acid (AA).

To understand the ionic strength dependence of the PBMA
surface charge it is necessary to realize that the surface charge
should be renormalized. This follows from the use of the
linear Poisson-Boltzmann theory in the model for the inter-
action potential. The concept of a renormalized charge can
be viewed physically as a result of counter ion condensation;
the counter ions are located in a thin layer around the particle,
causing a lowering of the electrostatic potential near the
sphere surface (13-15). The renormalization serves to sim-
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plify the theoretical considerations in the analysis of experi-
mental data. It carries with it the penalty that the surface
charge obtained is not the actual bare surface charge, but a
smaller effective surface charge, reflecting the charged parti-
cle plus some recondensed counter ions (15). For colloidal
crystals, Alexander et al. (13) developed a procedure, based
on the Poisson—-Boltzmann cell model, for converting the
renormalized charge to the bare surface charge. For the pur-
pose of this study, it suffices to know that such conversion
procedures exist. We are in fact more interested in the renor-
malized, effective surface charge, as this quantity can be used
directly to predict phase behavior (64), colloidal structure
(10, 63), and dynamics (5, 12). The effective charge has
been found, both numerically (13) and by computer simula-
tions (48), to be an increasing function of the dispersion
ionic strength, even though the bare charge is kept fixed. The
PBMA data in Fig. 9 provides experimental support for this
property of the effective charge.

As seen in Fig. 9, the charge is roughly a linear function
of ka. The lines shown are linear least-squares fits to the
data, the slopes of which yield the surface potential ac-
cording to the Debye—Hiickel formula

LB E\Ifs
Qa (1 + ka) T [17]
The linearity of the data in Fig. 9 implies that the surface
potential Ws remains independent of the electrolyte level in
the regime investigated. We obtain ¥s = —78 and —56 mV
for the PBMA/AA and PBMA dispersions, respectively.
These values are in good agreement with { = —68 mV
obtained from Henry’s equation (1, 38) applied to the elec-
trophoretic mobility of the PBMA/AA dispersions. Similar
increasing trends of the electrophoretic charge with ionic
strength were observed by Midmore and Hunter (65).

In Fig. 9 the data partition themselves onto two lines
according to whether the particles contain added weak acid
groups or only a smaller number of strong acid groups. The
exception is PBMA3 at [KCI] = 30 mM (see Table 2),
which superposes on the PBMA/AA data. This dispersion
was synthesized with a higher initiator content. Increasing
the amount of initiator is an effective means, in the case of
PBMA, of incorporating more strong surface acid groups
(66). The resulting titration charge in Table I shows indeed
that PBMA3 has a higher surface charge than either PBMA1
or PBMA2, both of which were synthesized using lower
initiator contents. The effective charge density of the
PBMA/AA dispersions is found to be an order of magnitude
smaller than the corresponding titrated charge (see Table
1), a well-documented effect (13, 16, 65). The PBMA dis-
persions show effective charge densities that increase with
increasing initiator content, in agreement with, but somewhat
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larger than, the titration measurements, The fact that the
present method operates at high particle concentrations and
can consistently distinguish between dispersions with differ-
ent charge densities not only serves to validate the method
itself, but also shows that the renormalized charge concept
holds at high colloid concentrations and high ionic strengths.

CONCLUSION

A method for determining the effective surface charge
density directly in concentrated liquid charge-stabilized dis-
persions has been demonstrated. Measurements of the high-
frequency limiting shear modulus as a function of added
electrolyte and surface acid content show sensitivity to the
strength and range of the interparticle interaction and are
thus well suited to probing the strength of colloidal forces.
A hard-sphere perturbation theory of the dispersion micro-
structure yields, for high ionic strengths, a simple relation-
ship between the high-frequency shear modulus and the ef-
fective surface charge. The only input is an effective hard-
sphere diameter, determined in this work from the high
concentration behavior of the zero-shear viscosity. The re-
sulting effective charge is found to show the proper depen-
dence on electrolyte concentration and surface acid content.
The extracted charge densities agree well with dilute mea-
surements of the electrophoretic mobility, provided these are
analyzed in a consistent manner (linear Poisson-Boltzmann
theory). These findings suggest that the diffuse double-layer
charge remains essentially constant with particle concentra-
tion but is an increasing function of added electrolyte. Fi-
nally, because the method is, in general, not specific to elec-
trostatically stabilized dispersions, it could be used to charac-
terize other methods of stabilizing colloidal particles, such
as polymer steric stabilization.

APPENDIX

Approximate Formula for the Elastic Shear Modulus

Simple analytical expressions relating the high-frequency
elastic shear modulus to the interaction potential have been
derived for systems in which the structure is highly localized.
For liquids the structure is no longer localized, rendering
these formulas inappropriate. We pursue a simple analytic
relationship between the high-frequency shear modulus and
the interaction potential for molecular liquids or, equiva-
lently, a monodisperse liquid dispersion in the absence of
hydrodynamic particle interactions.

When the interaction potential is rapidly decaying, the
Zwanzig and Mountain formula can be integrated by parts,
leading to

3¢* mdrr“dg(r) dWU(r) kT

[18]
40 Jo dr dr

L& 3
kT 4w
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A direct hard-sphere mapping is ill suited to treating the
above expression because the shear modulus of the hard-
sphere reference system is infinite (44, 67). We appeal in-
stead to perturbation theory in making the substitution

g(r; ) = g (2r/Degr; e ). [19]

In this approximation the implicit dependence of g(r) on
the interaction potential is described through an effective
hard-sphere diameter Dey = 2(eie/)'"”. The approximate
gns(r) has been shifted radially by an amount Dy — 2 to
capture the effect of the additional excluded volume due to,
in this case, the electrostatic repulsion between the colloidal
particles. To obtain an analytic approximation we explicitly
factor out the discontinuity in the hard-sphere radial distribu-
tion function by writing it as a product of the Boltzmann
factor and the continuous, so-called cavity correlation func-
tion y(r). Noting that the Boltzmann factor for hard spheres
is just a unit step function, we arrive at the identity

8is(2r/ Dygr; err) = Yus(2r/ Do heee) U(r — Derr). [20]
Substitution into Eq. [18] results in

a’® 3¢ 3¢? dU(r)/kT
GL— =~ = = Déeyn (2 o) —————-

o DB )

LI , A
B %J‘ i Ayus (27! Dygr) dIf(r)/kT. (1]
407 0 dr dr

When the interaction potential is of short range the integral
in the above contributes little. Neglecting this term can be
viewed as a short-range approximation fo Eq. [21], which,
after evaluation of y(2; ¢berr ), becomes

@ _3¢ 3¢
kT 4r  40r

d¥(r)/kT

G dr

Dgff ghs(2; (beff) [22]

r=Deg

This formula is fully analytic when one of the available
hard-sphere theories for g, (2) is used. Note that previously
derived G' models for crystalline dispersions use a delta
function representation of the structure, whereas we take fuil
account of g (r) in deriving Eq. [22] and instead approximate
the integral appearing in the Zwanzig and Mountain formula.
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