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An empirical model predicting the viscosity
of highly concentrated, bimodal
dispersions with colloidal interactions

Abstract The relationship between
particle size distribution and viscos-
ity of concentrated dispersions is of
great industrial importance, since it
is the key to get high solids disper-
sions or suspensions. The problem is
treated here experimentally as well
as theoretically for the special case
of strongly interacting colloidal
particles. An empirical model based
on a generalized Quemada equation
n=1(l— %)_5 is used to describe
1 as a function of volume fraction
for mono- as well as multimodal
dispersions. The pre-factor # ac-
counts for the shear rate dependence
of n and does not affect the shape of
the n vs ¢ curves. It is shown here
for the first time that colloidal
interactions do not show up in the
maximum packing parameter and
¢max can be calculated from the
particle size distribution without
further knowledge of the interac-
tions among the suspended particles.
On the other hand, the exponent ¢ is
controlled by the interactions among

the particles. Starting from a limiting
value of 2 for non-interacting either
colloidal or non-colloidal particles,
¢ generally increases strongly with
decreasing particle size. For a given
particle system it then can be
expressed as a function of the num-
ber average particle diameter. As a
consequence, the viscosity of bimo-
dal dispersions varies not only with
the size ratio of large to small
particles, but also depends on the
absolute particle size going through
a minimum as the size ratio increas-
es. Furthermore, the well-known
viscosity minimum for bimodal dis-
persions with volumetric mixing
ratios of around 30/70 of small to
large particles is shown to vanish if
colloidal interactions contribute
significantly.
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Introduction

Market competition, cost reduction, and environmental
driving forces are pushing industrial researchers to
formulate polymer dispersions with a particle loading
as high as possible. The benefit will be an increased time-
space yield during production, reduced transportation
costs, and less energy consumption for the removal of
solvent in the application process. At the same time the
viscosity has to be kept low enough in order to ensure a
sufficient heat transfer during polymerization as well as

reasonable stir-, pump-, and sprayability during trans-
port and application. Particle loadings beyond a volume
fraction of 0.60 can only be achieved if the particle size
distribution is either broad or bi- or multimodal.
Consequently, the rheology and the packing possibilities
of highly concentrated suspensions have been discussed
intensively by academic as well as industrial researchers.
The literature strongly focuses on suspensions of non-
Brownian spheres (e.g., Farris 1968; Chong et al. 1971;
Poslinski et al. 1988; Sengun and Probstein 1989, 1997;
Gondret and Petit 1997) or on Brownian but so-called
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hard spheres (Rodriguez and Kaler 1992; Chang and
Powell 1994; Shikata et al. 1998). Only a few papers deal
with the rheology of Brownian particle suspensions with
either electrostatic (Zaman and Moudgil 1999; Richter-
ing and Miiller 1995) or steric interactions (Woutersen
and de Kruif 1993; D’Haene and Mewis 1994; Green-
wood et al. 1997) or a combination of both (Hoffman
1992; Chu et al. 1998).

Monodisperse suspensions can in principle pack in
several ways with different maximum packing fractions,
e.g., ¢ =0.52 for simple cubic, ¢, =0.74 for hexagonal
or 0.63 for random close packing. For a random close
packed bimodal system a maximum packing fraction
¢m=0.87 is achieved assuming Ri,rec/Rsman > 10 so
that small particles together with the solvent molecules
can be treated as a continuum. The small particle
volume fraction then is &=0.27 (Farris 1968). From
simple geometrical considerations it follows that the
small particles exactly fit into the pores between the large
ones at a critical size ratio Riarge/Reman = 6.46 (McGeary
1961). In this case the number ratio of small to large
particles Ngmai/Niarge ~ 100; that means there are much
more small particles than interstices between large
particles. Therefore, the simple picture of small particles
filling the space between the large ones, thus providing a
high maximum packing fraction and a low viscosity, is
not valid for bimodal suspensions with size ratios like
this. If the size ratio is below this critical value the lattice
of the large particles may be expanded, and microphase
separation or the formation of superstructures can also
occur. These phenomena have been discussed intensively
in the literature (e.g., Verhaegh and Lekkerkerker 1997;
Bartlett and Pusey 1993). Despite the variety of packing
possibilities, viscosity reduction in bimodal suspensions
is a very general phenomenon and has been observed for
large as well as intermediate and small size ratios. A
minimum viscosity at a small particle volume fraction &
of about 0.3 has been reported for suspensions of non-
Brownian glass beads (Chong et al. 1971) as well as for
Brownian hard sphere (Rodriguez and Kaler 1992) and
colloidally interacting suspensions (Zaman and Moudgil
1999).

The aim of this paper is to work out a procedure
which allows for a simple calculation of the viscosity of
suspensions or dispersions at particle loadings and shear
rates relevant for industrial applications. An empirical
model based on a generalized Quemada equation is used
to describe 7 as a function of volume fraction for mono-
as well as multimodal dispersions. This model quanti-
tatively describes the viscosity of a large number of
bimodal suspensions with significantly different size and
mixing ratios investigated here. Moreover, it qualita-
tively predicts well-known features of suspensions with
colloidal interactions. In particular, it is shown, that the
viscosity varies not only with the size ratio of large to
small particles, but also depends on the absolute particle

size, and that the viscosity minimum for bimodal
dispersions with volumetric mixing ratios of around
30/70 of small to large particles vanishes, if colloidal
interactions contribute significantly.

Experimental

Samples

All dispersions were made by seeded emulsion polymerization. For
our examinations, we used dispersions with a monomodal as well
as dispersions with a bimodal particle size distribution. In order to
produce bimodal dispersions with high solids content we started the
polymerization with two different seeds differing in their average
particle size. The initial amount of these seeds was governed by the
desired particle size distribution. This is a convenient method to
obtain bimodal dispersions with a very high viscosity because there
is no need for mixing two monomodal dispersions and evaporation
of water afterwards that could induce coagulation and agglomer-
ation. All dispersions had the same chemical composition consist-
ing of 99 parts butylacrylate, 1 part acrylic acid, 0.8 parts
dodecylphenoxybenzene disulfonic acid sodium salt (Dowfax
2A1), and 0.2 parts sodium laurylsulfate.

The initiation was done either with sodiumperoxodisulfate, a so-
called thermal initiation, or with the redox system ascorbic acid/
tert-butylhydroperoxide. Thus we attained dispersions with the
same particle size distribution but with different surface properties.

Measurements

Viscosity measurements were done with a controlled strain
rotational rheometer Rheometrics RFS II equipped with a Couette
(Rj=16 mm, R,=17 mm) sample cell. All measurements were
performed at 20 °C.

Particle size distributions were determined using the analytical
ultracentrifuge technique (Maéchtle 1992). Typical results are
presented in Fig. 1, showing the differential mass distribution as
a function of particle diameter. The mean size of each particle
species was determined from the position of the maximum of the
corresponding peak, and the relative fraction of each species was
calculated from the area under each peak.

Results and discussion
Experiments

The viscosity of a large number of mono- and bimodal
dispersions was determined as a function of shear rate
and volume fraction. Data for a monomodal system
with 250 nm particle diameter are shown in Fig. 2.
These results are typical for all suspensions investigated
here. Varying the particle concentration, two regimes
differing with respect to the shape of the viscosity curves
can be distinguished.

At volume fractions ¢ below a critical packing
fraction ¢, the viscosity curves exhibit a Newtonian
plateau at low shear rates followed by a shear thinning
region, indicating that the dispersions behave like a
liquid. The onset of shear thinning is shifted to higher
shear rates and the degree of shear thinning decreases
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with decreasing volume fraction. The high shear limiting
value of the viscosity is not reached within the shear rate
range (7 < 500 s!) investigated here.

For ¢p > ¢, the dispersions are shear thinning in the
whole shear rate range investigated and neither a high
nor a low shear plateau is observed. The viscosity curves
show a slight upward curvature at low shear rates
indicating an apparent yield stress. At these volume
fractions the dispersions show gel-like behavior. The
shape of the flow curves hardly changes with the particle
density in this regime and the variation of ¢ essentially
results in a vertical shift of the viscosity vs shear rate

curves. Therefore, the relative change of viscosity with
volume fraction is independent of shear rate and it is
sufficient to discuss the effect of packing density on
viscosity at a fixed shear rate.

Dispersions go through various flow fields during
manufacturing and application; typical shear rates
during stirring and pumping are in the range between
50 s ' and 500 s'. From this point of view we have
decided to analyze the effect of particle size distribution
on viscosity at a shear rate of j = 200 s~!. All viscosity
data shown in the subsequent part of the paper are taken
at this particular shear rate.
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In Fig. 3 the viscosity of a bimodal dispersion with
Rigrge =270 nm, Ry =88 nm, and a small particle
volume fraction &,=0.72 is shown as a function of
volume fraction.

The particle concentration dependence of the zero
shear viscosity of liquid-like dispersions is often de-
scribed by phenomenological equations like the Krieger-
Dougherty equation (Krieger and Dougherty 1959):

(,Z’) 72<5d)mux

M = Nsolvent <1 - (b— (1)
max

or the equation derived by Quemada (1977):
¢ -2

M = Nsolvent <1 - d)— (2)
max

where #so1vent 18 the viscosity of the dispersing agent or
solvent, which is water in our case, and ¢, 1s the
maximum packing fraction for a given particle size
distribution. The advantage of the Krieger-Dougherty
equation is, that it reduces to the correct Einstein
equation in the limit of infinite dilution, whereas the
Quemada equation gives the right divergence for n as ¢
approaches ¢,.. For a monodisperse suspension with
P max = 0.63 the exponent in Eq. (1) is slightly lower than
in Eq. (2). Trying to fit both equations to the experi-
mental data in Fig. 3 with ¢, as an adjustable
parameter shows that neither the Krieger-Dougherty
nor the Quemada equation can match the shape of the
experimentally determined # — ¢ curve. Therefore, we
introduce an additional phenomenological parameter ¢
and propose a generalized Quemada equation (Gondrot
and Petit 1997):

M [mPas] (y=200s™)

10°

___________ P B-270/88-72
10" L5 .
0.4 0.5 0.6
o
Fig. 3 Viscosity vs volume fraction for highly concentrated disper-
sions. Generalized Quemada Eq. 3) (— — —), Quemada Eq. (2)

(- —-) and Krieger-Dougherty Eq. (1) (....) fitted to the experimental
data (@) for a bimodal dispersion with Djyree =270 nm,
Dgpan =88 nm, and &,=0.72

(3)

The pre-factor 7 determines the viscosity level and
depends on shear rate, only. It does not affect the shape
of the n — ¢ curve. Therefore, it will not be discussed
further in the subsequent part of the paper. As
demonstrated in Fig. 3, the generalized Quemada equa-
tion provides a very good fit to the experimental data.

A large number of mono- and bimodal dispersions
with different absolute particle size, size ratio, and small
particle volume fractions have been analyzed in an
analogous way. The resulting values for the maximum
packing fraction ¢,,,x and the exponent ¢ are discussed
in the next section.

As indicated by Eqs (1), (2), and (3) the viscosity of a
concentrated suspension is strongly controlled by the
ratio of its volume fraction to the maximum packing
fraction. Consequently, technical improvements aim at
an increase of ¢« through optimization of the particle
size distribution in order to decrease the viscosity at a
given particle loading. McGeary (1961) has performed
intensive studies regarding the packing properties of
multimodal suspensions of glass beads and Sudduth
(1993) has presented the following mathematical para-
metrization of these data:

(90— Dmax ) €xp <0.27 <1 - %) >

1

¢max = ¢, — (4)

with
oy =1~ (1 - 47’

and

D. — > i Nid}
Zinzl Nid?_l

where ¢, 1s the maximum packing fraction of an
n-modal suspension of spherical particles, ¢, = 0.63
is the corresponding value for a monodisperse suspen-
sion, and D, is the x-th moment of the particle size
distribution, namely D; is the number average of the
particle diameter.

We have used Eq. (4) to calculate ¢« from the
particle size distributions of our bimodal suspensions as
determined from the analytical ultracentrifuge measure-
ments. In Fig. 4 these values are compared to those
obtained from fitting Eq. (3) to the viscosity vs ¢ data.
Each data point in that plot represents a particular,
separately polymerized suspension. Obviously, there is a
strong linear correlation (correlation coefficient
R =0.95) between these differently determined maxi-
mum packing values. This is surprising since the
viscosity measurements were performed on dispersions
of colloidally interacting Brownian spheres, whereas
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Eq. (4) describes the packing properties of non-Brown-
ian hard spheres. Obviously, the packing parameter
¢max 18 Independent of the interactions among the
particles and can be predicted from the particle size
distribution alone.

The values for the exponent ¢ extracted from fitting
Eq. (3) to the 5 vs ¢ data are shown in Fig. 5 vs the
number average mean particle diameter D; of the
corresponding bimodal suspension. Two series of bimo-
dal mixtures have been investigated. These series differ
with respect to the initiation of the polymerization which
is expected to result in a different particle surface
structure and hence a different repulsive interaction

¢max from viscosity
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0.76
t

- -
0.721 R=095
0.681

T a u
0.64- /:/ -

i s "
0.60 . . , . : . : - .

0.62 0.66 0.70 0.74 0.78

¢max from particle size

Fig. 4 Maximum packing fraction ¢, as determined from a fit of
Eq. (3) to the 1 — ¢ data for various mono- and bimodal dispersions
VS ¢max as calculated from the particle size distribution according to
Eq. 4
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Fig. 5 Exponent ¢ as determined from a fit of Eq. (3) to the  — ¢
data for various mono- and bimodal dispersions vs the corresponding
number average of the particle diameter D,. Two sets of mixtures
polymerized with redox (W) and thermal (@) initiation have been
investigated. The lines correspond to fits of Eq. (5) to the experimental
data

among the particles. In both cases ¢ starts from a
limiting value of 2 for large mean particle diameters but
strongly increases as D decreases and values larger than
4 are obtained at mean particle diameters below 100 nm.
This increase is less pronounced for the systems which
were thermally initiated than for those were the
polymerization was started using a redox agent.

The limiting value of ¢ =2 reached for D; > 250 nm
is in good agreement with the exponent of divergence for
the wviscosity of hard sphere dispersions observed
experimentally (De Kruif et al. 1985) as well as predicted
theoretically (Brady 1993). This is reasonable since, due
to the high ionic strength (estimated ion concentra-
tion >0.05 mol/l) the range of the electrostatic interac-
tions is much shorter than the mean particle separation
at the investigated particle volume fractions. Thus, if D,
is large enough these dispersions behave like hard sphere
suspensions with respect to the viscosity. On the other
hand, the increase of ¢ with decreasing mean particle size
is attributed to the effect of colloidal interactions. As the
mean particle separation decreases, colloidal interac-
tions among the particles are getting more and more
important and this leads to a much stronger divergence
of the viscosity than expected for hard spheres. The
differences in ¢ observed for the two differently poly-
merized systems further support the interpretation that
the increase of ¢ is governed by colloidal interactions. A
dependence of these particle-particle interactions on the
structure and chemical composition of the particle
surface seems to be reasonable, but a detailed interpre-
tation of the relationship between particle interactions
and polymerization conditions is beyond the scope of
this work.

Model calculations

Equation (3) can be used to calculate the viscosity of
highly concentrated, multimodal suspensions as a
function of volume fraction. The maximum packing
fraction ¢,,x can be calculated from the particle size
distribution according to Eq. (4). The exponent ¢
depends on the colloidal interactions and its dependence
on particle size has to be determined from viscosity
measurements for a particular type of suspension. We
have investigated the effect of particle size and mixing
ratio on the viscosity of bimodal suspensions. These
model calculations are based on the ¢ (D) data for the
thermally initiated dispersions. In order to describe
these data numerically, we have fitted the following
phenomenological equation to the data presented in
Fig. 5:

).

(5)
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Also the pre-factor #j(7 =200s~!) which has been
determined for this system has been used.

The effect of particle size ratio on viscosity is shown
in Fig. 6. For these calculations D), =800 nm, a total
volume fraction ¢ =0.6, and a small particle volume
fraction £,=0.25 have been chosen. Obviously the
viscosity strongly decreases as the size of the small
particles decreases, goes through a minimum at Dy, e/
Dgmann & 4, and then increases again as the size ratio
further increases. This minimum is a consequence of the
increase of ¢ with decreasing mean particle diameter. If ¢
is kept constant the viscosity decreases monotonically
with increasing size ratio, as expected for hard sphere
suspensions (Chong et al. 1971). In Fig. 6 this is shown
for e=2.

The variation of viscosity as a function of small
particle volume fraction has been considered for two sets
of mixtures with a similar size ratio Djyge/Dsman = 3.1
but different absolute particle sizes. The results are
shown in Fig. 7. In both cases the total volume fraction
¢ was set to 0.6 and the ¢ (D) data for the thermally
initiated dispersions were used to perform the calcula-
tions. For the mixture of large particles (680 nm and
210 nm, ¢=2 for any value of &) the viscosity goes
through a minimum for a small particle volume fraction
£, ~ 0.25. This is in accordance with the well-known
behavior of Brownian (Rodriguez and Kaler 1992) as
well as non-Brownian hard sphere suspensions (Chong
et al. 1971; Gondrot and Petit 1997). In contrast, the
viscosity increases monotonically with &g for a mixture
of small particles (250 nm and 80 nm) with a similar size
ratio. This is again due to the fact that ¢ increases with
increasing number of small particles (corresponding to a

N [mPas] ¢
12+ L4
10 -«

-3
8 .
6] -2
4 ] N

Diarge =800 nm > -1
24& =025 AN

[0} =060 00 O TTTmmmmmeememee— -
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Dlarge/ Dsmai

Fig. 6 Viscosity vs particle size ratio calculated according to Eq. (3).
Model parameters: Dy,roe =800 nm, ¢ =0.6, =0.72, ¢ppax calcula-
ted from Eq. (4); (— — —) ¢ (D)) taken from a fit of Eq. (5) to the
experimental data in Fig. 5 for thermal initiation; (— — —) analogous
calculation assuming ¢=2; (...... ) dependence of ¢ on the particle size
ratio (right y-axis)

decrease in D) as a consequence of the contribution of
colloidal interactions. These results correspond very well
with experimental data on electrostatically stabilized
polystyrene dispersions (Horn 1999). For their system
the well-know viscosity minimum at a volumetric mixing
ratio of around 30/70 of small to large particles is found
at high ionic strength, where the electrostatic particle
interactions are strongly suppressed, but vanishes at low
ionic strength, where colloidal interactions contribute
significantly.

Conclusion

The relationship between particle size distribution and
viscosity of highly concentrated, gel-like dispersions has
been treated here experimentally as well as theoretically
for the special case of strongly interacting colloidal
particles. An empirical model based on a generalized
Quemada equation n = 7j(1 — d)‘é )~ is used to describe
n as a function of volume fraction for mono- as well as
multimodal dispersions. The pre-factor # accounts for
the shear rate dependence of # and does not affect the
shape of the 5 vs ¢ curves.

Colloidal interactions do not show up in the maxi-
mum packing parameter. The experimentally deter-
mined ¢, values agree very well with predictions
from an empirical expression derived for non-colloidal
suspensions with arbitrary particle size distribution. So
this parameter can be extracted from the particle size
distribution without further knowledge of the nature
and strength of the interactions among the suspended
particles.

'1 01 T T T T T T T T T T
&

Fig. 7 Viscosity vs small particle volume fraction & calculated
according to Eq. (3). Model parameters: ¢ =0.6, ¢nax calculated
from Eq. (4), ¢(D) taken from a fit of Eq. (5) to the experimental data
in Fig. 5 for thermal initiation; (— — —) Diarge = 250 nm, Dgpan =
80 nm, Dlarge/Dsmall =3.1 (7 - 7) Dlarge: 680 nm, Dy =210 nm,
Dlarge/Dsmall =3
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The exponent ¢ is controlled by colloidal interac-
tions. Starting from a limiting value of 2 for non-
interacting either colloidal or non-colloidal particles, ¢
generally increases strongly with decreasing particle
size depending on the range and strength of the
colloidal interactions. For a given particle system ¢
then is a function of the number average mean
diameter D; only. The presented model describes the
viscosity of a large number of suspensions investigated
here quantitatively. Moreover, it qualitatively predicts
well-known features of bimodal suspensions with
colloidal interactions. In particular, it is demonstrated
that the viscosity of bimodal dispersions varies not

only with the size ratio of large to small particles, but
also depends on the absolute particle size going
through a minimum as the size ratio increases.
Furthermore, the model predicts that the well-known
viscosity minimum for bimodal dispersions with volu-
metric mixing ratios of around 30/70 of small to large
particles vanishes if colloidal interactions contribute
significantly.

Effects like this severely limit the development of
colloidal suspensions with high particle loadings.
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