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High frequency rheology of hard sphere colloidal dispersions
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Abstract

The high frequency rheology of model, hard sphere dispersions of charge-neutralized, coated silica particles in
tetrahydrofurfuryl alcohol (THFA) was measured using two torsional resonators at five frequencies. The resulting
elastic modulus showsω1/2 limiting behavior at high frequencies and is in quantitative agreement with the theoretical
predictions of Lionberger and Russel [J. Rheol. 38 (1994) 1885]. The lack of a high frequency plateau is a signature
of weaker hydrodynamic interactions acting at very small separations. Calculations verify that despite the lack of a
high frequency plateau, these dispersions can exhibit reversible shear thickening at high shear rates, in agreement
with experiment. Thus, the experiments verify the unique sensitivity of high frequency rheology to hydrodynamic
properties at the particle surface. © 2002 Published by Elsevier Science B.V.
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1. Introduction

The high frequency elastic modulus (G′
∞) is a useful tool to study the interactions at small separations

between colloidal particles [1–3]. The frequency dependence ofG′ in the limit of high frequency is of
special interest for the case of the hard sphere potential because in the absence of singular, lubrication
hydrodynamic interactions, the discontinuity in the potential leads to a limitingG′ ∝ ω1/2 behavior,
whereω is the frequency of oscillation of the applied flow [4,5]. However, the presence of near-field
hydrodynamic interactions has been shown theoretically to lead to a limiting valueG′

∞ [2]. These authors
prove that lubrication hydrodynamic interactions eliminate the diffusional boundary layer that leads to
ω1/2 dependence. Consequently, theoretical considerations demonstrate that the qualitative behavior of
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the high frequency elastic modulus of hard sphere colloidal dispersions is very sensitive to the presence
of short-range hydrodynamic interactions.

Interestingly, there are only two experimental data sets for the high frequency modulus of model hard
sphere dispersions. de Kruif and coworkers [6] studied octadecyl coated silica in cyclohexane, an index
matching solvent. Their results, which were obtained on a series of torsional and nickel-tube resonators
developed by Mellema and coworkers [6], clearly show aω1/2 dependence for the high frequency elastic
modulus. Small angle neutron scattering (SANS) measurements of similar dispersions where shown to
quantitatively agree with hard-sphere predictions up to volume fractions of 50% [7].

Shikata and Pearson [8] studied a commercial silica in index matching solvent, consisting of an ethylene
glycol and glycerol mixture. They report evidence for a high frequency plateau, in contrast to the former
investigators. They used a conventional rheometer and the method of time–temperature superposition to
obtain the high frequency moduli. As noted by the authors, definitive plateaus were not obtained for many
of the concentrations investigated and those that appeared to limit to a plateau often did not demonstrate
a definitive plateau over a broad frequency range, which was a consequence of measurement limitations.
Further, due to the viscous solvent, the viscous modulus greatly exceeded the elastic modulus at high
frequencies, making extraction of the elastic modulus difficult. As importantly, the data of Shikata and
Pearson [8] has no independent verification of the hard-sphere interaction potential other than comparison
of the zero shear viscosity.

The importance of short-range hydrodynamic interactions in particle dispersion rheology has been
recognized for some time. The work of Jeffrey and Acrivos [9] and Frankel and Acrivos [10] demon-
strated that these interactions alone can drive a divergence in the viscosity at high packing fractions.
Simulations [11,12], experiment [13,14] and theory [5,15] have all shown that the high shear rate rheo-
logy of hard-sphere-like dispersions is dominated at high concentrations by shear thickening, which is a
consequence of these short-range hydrodynamic interactions driving the formation of a self-organized,
“hydroclustered” microstructure. Thus, experimental methods to detect and quantify, directly, these
short-range hydrodynamic interactions are vital to further our understanding of dense dispersion rheology.

The recent development of a model, hard-sphere system consisting of acid titrated 3-(trimethoxysilyl)-
propyl methacrylate (TPM) coated Stöber silica in index matching tetrahydrofurfuryl alcohol (THFA)
[14,16] and the commensurate development of a calibrated series of high-frequency torsional resonators
afforded an opportunity to provide additional measurements on a model hard-sphere system with inde-
pendent verification of the interaction potential and without reliance on the validity of time–temperature
superposition. In this contribution, we report on the quantitative comparison between measurements of
the high frequency modulus to the theoretical predictions for hard spheres [2].

2. Experimental

The synthesis of the Stöber-silica particles and their characterization has been reported in detail
[14,16,17], so only the essential features will be discussed here. The dispersions used here consist of
302± 26 nm diameter (by TEM) TPM-coated silica dispersed in index matching THFA (µ = 5.44 cP
at 20◦C). Index matching greatly reduces the Hamaker constant so that van der Waals dispersion
forces are removed. Nitric acid is added (0.1 M) to eliminate any residual surface charge, as verified
by zeta-PALS measurements. SANS measurements verified both the particle size and polydispersity
(318± 17 nm), and from a concentration series, the hard-sphere interaction potential [14]. The particle
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density (1.82±0.08 g/ml) extracted by matching the Einstein coefficient for the intrinsic viscosity agrees
exactly with that determined by solution densitometry (1.82 ± 0.01 g/ml), and the measured Huggins
coefficient (0.63± 0.93) is in agreement with the hard sphere value of∼1.0. Thus, by all conventional
measures, the particles are nearly monodisperse, spherical, hard spheres. Note that these samples show
extensive but reversible shear thickening for volume fractions >35%, which is thought to be due to the
influence of short-range hydrodynamic interactions [14].

The high frequency rheology was measured with two torsional resonators supplied by the Institut
für Dynamische Materialprüfung, Ulm, Germany. These instruments are similar to the one used by
Bergenholtz [1], and so the operation and analysis of the signal are not discussed here. The frequenciesω

accessible by these resonators are 23,000, 63,000, 119,000, 239,000 and 358,000 rad/s. All frequencies
were examined for the sampleφ = 0.50, while the diluted samples were only measured at 119,000 and
358,000 rad/s. Due to the instrument design, the 23,000 rad/ s frequency yields a weaker signal to noise,
so these results are not reported here. The sample measurement volume is 18 or 11 ml, depending on the
resonator. All measurements were performed at 20± 0.1 ◦C.

The rheological properties of a charge-neutralized dispersion (φ = 0.50) were measured. Due to
sample limitations, this sample was recovered after the experiment and 0.1 M HNO3 solution in THFFA
was added by weight to giveφ = 0.49. This procedure was repeated in volume fraction steps of 0.01 to
reach a finalφ = 0.45.

3. Theory

The derivations and discussion of the theoretical analysis of the high frequency modulus can be found in
Lionberger and Russel [2]. Neglecting the lubrication hydrodynamic interactions yields the free draining
model for the high frequency elastic modulus

G′
∞d3

kBT
=

(
d2ω

D0
S(φ)

)1/2
24φ2

5π
g(1) (1)

whered is the particle’s diameter,D0
S(φ) the short time self diffusion coefficient, which depends on

volume fraction (φ), kB the Boltzmann constant,T the absolute temperature andg(1) is the value of the
radial distribution function at contact.

CalculatingG′
∞ from Eq. (1) requires approximations forg(l) given by Carnahan and Starling in 1969,

andD0
S provided by Lionberger and Russel [2].

g(1) =




1 − (1/2)φ

(1 − φ)3
, φ < 0.5

0.78

0.64− φ
, φ ≥ 0.5

(2)

D0
S = D0(1 − 1.56φ)(1 − 0.27φ) (3)

whereD0 is the single particle diffusion coefficient and can be calculated from the Stokes–Einstein
equation. Note that these approximations forg(1) andD0

S diverge or vanish at a maximum volume
fraction of 0.64.
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The high frequency viscosity, which is a consequence purely of viscous dissipation, can be approximated
by an expression for the reduced viscosity [2]

η′
∞
µ

= 1 + (3/2)φ(1 + φ − 0.189φ2)

1 − φ(1 + φ − 0.189φ2)
(4)

whereη′
∞ is the high frequency viscosity of the sample andµ is the viscosity of the solvent. Note that this

equation and that for the self-diffusivity (Eq. (3)) are correlations of the data of Shikata and Pearson [8].

4. Results and discussion

The measured elastic modulus of a 50 vol.% dispersion (Fig. 1) shows aωn behavior withn = 0.70±
0.11. An average over all measurements at all volume fractions yieldsn = 0.59± 0.17. Note that each

Fig. 1. Frequency dependence of the elastic modulus for the 50% dispersion. The value ofDS used in reducing the frequency
is calculated for various maximum volume fractions—(a)φmax = 0.64: (�), experimental; (−·−·−), theory;φmax = 0.54: (�),
experimental; (− − −), theory; (b) best-fit result ofφmax = 0.57: (�), experimental, (—), free draining theory; (· · · ), lubrication
theory.
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measurement is plotted three times in Fig. 1 according to choice of the maximum packing fraction, as
will be discussed later on. This overall value for the frequency power law index is in agreement with the
value of 1/2, which has been predicted by theory if lubrication hydrodynamics are not dominant. Also
note that our values of scaled frequency are significantly higher than those measured previously [2] and
cover a broader range of values above the critical frequency. Also shown in Fig. 1b is the prediction of
the lubrication theory, which is substantially below the measurements.

As a first step toward understanding these measurements, it is necessary to check if the time scale
separation assumed in theory applies for the measurement and the dispersion. This requires that the vor-
ticity diffusion time for the hydrodynamic interactions to propagate and the relaxation time for particle
inertia are much shorter than the fastest time for one period of oscillation. Calculations of the rela-
tions given by Lionberger and Russel [2] demonstrate that these processes are faster than the fastest
oscillation frequency by factors of 91 and 1600, respectively. Therefore, the time scale separation is
respected.

Equally as important is the requirement of being in the high frequency limit. The onset of the high
frequency regime is defined by the relative thickness of the diffusion to the lubrication boundary layers.
The region near contact, where diffusion is equal in magnitude to convection, determines the thickness of
the diffusion boundary layer, which is frequency dependent. On the other hand, the distance where two
approaching particles start to slow down because the liquid between them is squeezed out, defines the
lubrication layer, which is frequency independent. Balancing these two yields an estimate of the critical
frequency at which the elastic modulus should reach its plateau value. Using this approximation leads to
a criticalωc of 4200 rad/s (forφ = 0.50 andφmax = 0.57) which is nearly an order of magnitude smaller
than the lowest frequency accessible with the resonators used. In summary, our measurements are safely
within the high frequency limit for this dispersion, and are safely below frequencies where particle inertia
and unsteady hydrodynamics become important.

A quantitative comparison between theory and experimental data reveals discrepancies (Fig. 1a). Note
that the theory has one parameter in it, the maximum packing fraction, which appears in the calculation of
the nearest neighbor distribution as well as in the diffusivity correlation. One reason for the discrepancy
is that the maximum volume fraction used in the theory is 0.64 (random close packing), while fitting
zero shear viscosities to the Krieger–Dougherty equation yields an estimated value of 0.54. This value
is low compared to the values for random closed packing (0.64) or the glass transition (0.58), but could
possibly be due to a small amount of surface roughness or adsorbed water and ions. Rescalingg(1) andD0

S
relative to this maximum volume fraction (0.54) results in predicted values ofG′

∞ that are considerably
higher than the experimental ones. To compare theory and experiment, we plot both on a master plot as
a function of scaled volume fraction (φ/φmax) and fit the data to the theory to determine the maximum
packing fraction for our dispersion. A best-fit value is determined to beφmax = 0.57, which is shown
in Fig. 1b. This value is close (to within experimental uncertainty) to the hard sphere glass transition
concentrationφG = 0.58, as found by van Megen and Underwood [18], and Pusey and van Megen
[19], which is also the value for the maximum packing of hard spheres as determined by our previous
investigations [1,20,21].

Limited sample quantities limited the investigation to two frequencies for the lower volume fractions.
This data is shown in Fig. 2 and compared directly with theoretical calculations of Eq. (1), where again
φmax = 0.64 for the theory and 0.57 for the experimental data. The ratio between theG′

∞ values obtained
for the two frequencies is, to within uncertainty, constant for all the volume fractions and is consistent
with theω1/2 behavior.
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Fig. 2. Volume fraction dependence of the high frequency elastic modulus for two frequencies. The experimental data are
scaled forφmax = 0.57, ω = 119,000 rad/s (�), ω = 358,000 rad/s (). The solid and the dashed lines are the results of the
free draining model while the dash dotted line represents the frequency independent plateau value predicted by the lubrication
model.

Over the volume fraction range of 45–50%, no high frequency plateau is observed for the elastic
modulus and, therefore, the lubrication singularity does not hold for this system. Possible reasons for
this might be the small amount of surface roughness and adsorbed ions and water. However, the range
of these interactions would have to be on the order of a few nanometers to give this effect because the
thickness of the lubrication layer is estimated to be 2.5 nm (forφ = 0.50 andφmax = 0.57, as given by
Eq. (5.7) in [2]). As noted by Philipse [22], the TPM coating layer is a “loosely structured layer” of a few
nanometers, which is consistent with our observations.

Interestingly, the distance of separation at the onset of shear thickening, which is known to be a
consequence of lubrication interactions at high shear rates, is approximately 15 nm [14]. Consequently,
there is no inconsistency between the observation of shear thickening and the lack of a high frequency
modulus. Indeed, the presence of extremely short-range forces has been invoked to explain the apparent
deviation from the predicted, weak, logarithmic divergence in the viscosity [14].

A final crosscheck for the frequency dependence of the measured moduli is the loss modulus, because
both moduli are obtained simultaneously from the measured frequency shifts and damping coefficients.
The experimentally obtainedη′

∞ (Fig. 3) follow the volume fraction dependence predicted by Eq. (4),
again using the same scaling with maximum packing fraction. No frequency dependence is observed for
this quantity, in agreement with theoretical expectations.

van der Werff et al. [6] determinedη′
∞ by extrapolating their data to high frequencies using a Rouse-like

model. In contrast Shikata and Pearson [8], with their relatively higher solvent viscosity, obtained a
frequency independentη′

∞ as observed here. Their data is represented by the correlation line (Eq. (4)) in
Fig. 3. As seen, our results for the high frequency viscosity agree with the previous two measurements.
Despite the extreme differences in the measuredη′

∞ values between experiments, the agreement forη′
∞ is

to be expected. As discussed previously [1,20],η′
∞ is dominated by the far-field hydrodynamic interactions

and is relatively insensitive to the near-field lubrication interactions. Consequently, the presence of a
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Fig. 3. Volume fraction dependence of the reduced viscosity. The experimental data are scaled forφmax = 0.57. The two
frequenciesω = 119,000 rad/s (�) andω = 358,000 rad/s () give nearly the same results. The solid line is the approximation
given by Lionberger and Russel [2]. Data by van der Werff et al. [6] are included in this plot: SP23 (+), SSF1(×), SJ18 ( ).

diffusive boundary layer exceeding the lubrication layer in extent is largely irrelevant in the calculation
of the high frequency loss modulus. This suggests that accurate measurements of the loss modulus could
be used to determine the hydrodynamic volume fraction of dispersions.

In conclusion, the results presented here demonstrate the lack of a high frequency plateau and con-
sequently, the loss of singular lubrication hydrodynamic interactions at the particle surface, in a model
hard sphere dispersion. Quantitative agreement is obtained with the theoretical predictions of Lionberger
and Russel [2]. These results are consistent with previous observations on a sterically stabilized dispersion
by van der Werff et al. [6], and are in contrast to the plateau observed by Shikata and Pearson [8] for
a commercial silica in a more viscous solvent. These measurements cover a relatively higher frequency
range than the previous measurements and are safely within the upper and lower limits that defineG′

∞ As
expected, the high frequency viscosities are comparable to both previous measurements, as this property
is relatively insensitive to the near-field lubrication hydrodynamics. Finally, we note that these samples
show strong, reversible shear thickening at higher shear rates. Estimates of the separation distance at
the onset of hydrocluster formation, however, are significantly larger than the lubrication boundary layer
required for a plateau inG′

∞. Consequently, there is no dichotomy in the observation of shear thickening
and theG′ ∝ ω1/2 at high frequencies.
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