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Abstract The capillary breakup extensional rheometry
(CaBER) is a versatile method to characterize the elon-
gational behavior of low-viscosity fluids. Commonly,
data evaluation is based on the assumption of zero
normal stress in axial direction (σzz = 0). In this pa-
per, we present a simple method to determine the
axial force using a CaBER device rotated by 90◦ and
analyzing the deflection of the filament due to grav-
ity. Forces in the range of 0.1–1,000 μN could be as-
sessed. Our study includes experimental investigations
of Newtonian fructose solutions and silicon oil mixtures
(viscosity range, 0.9–60 Pa s) and weakly viscoelastic
polyethylene oxide (PEO, Mw = 106 g/mol) solutions
covering a concentration range from c ≈ c∗ (critical
overlap concentration) up to c > ce (entanglement con-
centration). Papageorgiou’s solution for the stress ratio
σzz/σrr in Newtonian fluids during capillary thinning
is experimentally confirmed, but the widely accepted
assumption of vanishing axial stress in weakly viscoelas-
tic fluids is not fulfilled for PEO solutions, if ce is
exceeded.
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Introduction

General remarks

Many industrial applications and processes such as
coating (Fernando et al. 1989, 2000), spraying (Dexter
1996; Prud’homme et al. 2005) (including mist for-
mation (James et al. 2003) and its prevention (Chao
et al. 1984)), inkjet printing (Agarwal and Gupta
2002; Han et al. 2004; Vadillo et al. 2010) or fiber
spinning (McKay et al. 1978) include flow kinematics
with large elements of elongational flow. Due to this
high technical relevance, the correlation between rhe-
ological properties against elongational deformation
and fluid behavior in processes is a major subject of
research.

Technically relevant liquids are often complex multi-
component systems with special flow properties ad-
justed by adding small amounts of rheological modifier
or thickener. A great number of these additional
materials are commercially available, e.g., biopoly-
mers (polysaccharides) like xanthan gum, starch, car-
rageenan, or especially cellulose derivatives, inorganic
substances like silica or water-swellable clay, or simply
synthetic polymers like polyacrylates, polyvinylpyrili-
done, or polyethylene oxide (PEO) (Braun and Rosen
2000). Therefore, understanding the elongational flow
properties of such viscoelastic polymer solutions is of
fundamental importance in process optimization and
product development. Unfortunately, measuring the
elongational viscosity of low viscosity fluids is still a
very challenging task, resulting in only a few investiga-
tions which correlate the elongational behavior of com-
plex fluids with their application properties (Meadows
et al. 1995; Kennedy et al. 1995; Ng et al. 1996; Solomon
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and Muller 1996; Tan et al. 2000; Stelter et al. 2002; Plog
et al. 2005).

Nevertheless, a simple and versatile method for
the characterization of low-viscosity fluids has been
suggested more than 20 years ago (Bazilevsky et al.
1990; Entov and Hinch 1997; Bazilevsky et al. 2001),
this so called capillary breakup extensional rheometer
(CaBER) is even commercially available now. In this
experiment, an instable liquid filament is created by
applying a step strain, and the diameter of this liquid
bridge is monitored as a function of time. In contrast
to other techniques, CaBER allows for large Hencky
strains which are of great significance to industrial prac-
tice. Unfortunately, evaluating the elongational viscos-
ity is not trivial for CaBER experiments since no axial
force is measured. Accordingly, apparent elongational
viscosities are often calculated for CaBER.

In this paper, we introduce the tilted CaBER method
as a simple and accurate way to determine the axial
force F(t) and the elongational rate ε̇ during filament
thinning at the same time by only analyzing video
images. The conventional CaBER device is rotated
by 90◦, and the bending of the liquid filament due to
gravity is recorded using a high-speed camera. First,
we describe the principles of calculating the (appar-
ent) elongational viscosity from CaBER measurements
and discuss the typical decrease of the diameter for
Newtonian and viscoelastic fluids. Then, we describe
how to calculate the force from the deflection of a fluid
filament. After this, we present the experimental setup
and give a short overview of the samples used, including
preparation and characterization. Following with the
experimental part, we verify the tilted CaBER method
using Newtonian fluids and apply it to non-Newtonian
PEO solutions. Finally, concluding remarks are given.

Force balance for a straight vertical cylindrical thread

The axial force F in a cylindrical filament with axial ori-
entation into the direction of gravity (here, z-direction)
is assumed to be independent of the z-position, but F
may depend on time. Taking into account the surface
tension �, the normal stresses σzz and σrr, but neglect-
ing gravity and inertia effects (see Fig. 1), the total force
balances in z-direction reads as follows:

π

4
σzz D2 + π�D = F ⇒ σzz = 4 (F − π�D)

π D2 . (1)

McKinley and Tripathi (2000) used the ratio X be-
tween the true axial force F in the filament and the
value resulting from the assumption σzz = 0 in order to

Fig. 1 Cut filament (hatched areas) with normal stresses σzz and
σrr

quantify the influence of the axial normal stress σzz.

X = F
Fσzz=0

= F
π�D

(2)

For an infinitesimal volume element with length dz
and diameter D, the force balance in r-direction reads
as follows:

σrr D dz + 2� dz = 0 ⇒ σrr = −2�

D
. (3)

Calculation of the elongational viscosity

The elongational viscosity ηe for uniaxial elongational
flows like, e.g., in CaBER experiments is given by
Schümmer and Tebel (1983):

ηe = σzz − σrr

ε̇
. (4)

Insertion of the axial normal stress σzz (Eq. 1) and
the radial normal stress σrr (Eq. 3) into Eq. 4 results in
the following expression for the true elongational vis-
cosity valid for cylindrical or at least slender filaments:

ηe = 4F − 2π�D
π D2ε̇

. (5)

Using the definition of the elongation rate

ε̇ = − 2
D

dD
dt

, (6)

equation 5 yields

ηe = �

dD/dt
− 2F

π D dD/dt
. (7)

For the sake of completeness, expressions for the
radial normal stress and the elongational viscosity in
case of non-cylindrical filaments are given in Appendix.
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It is obvious from Eq. 7 that for calculating ηe, the
diameter D and the force F are needed. Therefore,
CaBER experiments with simultaneous force measure-
ments allow for the determination of the true elon-
gational viscosity for any fluid without assumption of
special constitutive equations.

But the evaluation of Eq. 7 is not trivial for CaBER
experiments since no axial force measurement is in-
cluded, and, hence, the normal stress σzz is not known.
Instead, ηe is often evaluated using the assumption
σzz = 0. Then an apparent elongational viscosity for
CaBER experiments is obtained (Anna and McKinley
2001):

ηe,app = − �

dD/dt
. (8)

So far, the σzz = 0 assumption has not been validated
experimentally for the CaBER experiment. Deviations
obviously occur for the Newtonian case (Liang and
Mackley 1994; Kolte and Szabo 1999; McKinley and
Tripathi 2000) and also shown in numerical simulations
of the CaBER experiment using different viscoelas-
tic or viscoplastic constitutive equations (Clasen et al.
2006a; Webster et al. 2008; Alexandrou et al. 2009).

Therefore, fluid characterization based on Eq. 8
might be helpful in comparative studies employed, e.g.,
for product development purposes. But especially for
the determination of the true elongational viscosity
from CaBER experiments, it is mandatory to measure
the time-dependent axial force F during filament thin-
ning accurately. The magnitude of this force can be
roughly estimated from the force balance in axial direc-
tion (Eq. 1) using the σzz = 0 assumption. Typically, �

is in the range of 20–70 mN/m, and the filament diam-
eter decays from 1 mm to about 10 μm. This corre-
sponds to a force range 0.5 μN < F(t) < 220 μN. The
first attempt to implement a force transducer into a
CaBER device was done by Klein et al. (2009). They
mounted a commercial quartz load cell to the fixed
bottom plate of their apparatus. Due to oversampling
of the force signal, a nominal sensitivity of 50 μN was
reached, but calibration was only done in the force
range larger than 2,000 μN. Thus, reliable force detec-
tion during capillary thinning of fluid filaments was not
possible.

Time evolution of the filament diameter
for Newtonian and weakly viscoelastic fluids

The time evolution of the diameter during capillary
thinning is controlled by a balance of capillary and
viscous or viscoelastic forces. Different characteristic
in diameter vs. time curves are observed for different

types of fluids, e.g., Bingham plastic, power law, and
Newtonian or viscoelastic fluids.

The midpoint diameter Dmid of a Newtonian fluid
in a CaBER experiment decreases linearly with time t
according to Papageorgiou (1995) and McKinley and
Tripathi (2000):

Dmid (t) = D1 − �
�

ηs
t (9)

where D1 is the initial diameter of the liquid bridge at
time t = 0 at which linear thinning of the filament sets
in, � is the surface tension, � is a constant numerical
factor, and ηs is the shear viscosity. The local force
balance (σzz = 0) for a thinning liquid yields � = 0.333
if only the surface tension is considered. Papageorgiou
(1995) calculated the numerical factor to � = 0.1418 in
case of negligible inertia (Reynolds number Re → 0).
Considering inertia (Re > 0), Eggers (1993, 1997) and
Brenner et al. (1996) estimated the numerical factor to
� = 0.0608 and showed that this solution is valid near
the filament break up.

McKinley and Tripathi (2000) confirmed the nu-
merical results of Papageorgiou (1995) (� = 0.1418)
experimentally using glycerol samples and related the
factor � to the force ratio X (Eq. 2).

X = 3� + 1
2

(10)

The experimental validated � = 0.1418 value cor-
responds to X = 0.713. This indicates that the axial
force is not only given by the surface tension, and
an additional axial normal stress must be present for
Newtonian liquid filaments.

In contrast to Newtonian liquids, weakly elastic poly-
mer solutions with concentrations c < ce form cylin-
drical filaments, and their diameter decreases expo-
nentially with time in CaBER experiments (Bazilevsky
et al. 1990; Entov and Hinch 1997; Anna and McKinley
2001; Arnolds et al. 2010).

D (t) = D1

(
GD1

�

)1/3

exp
(

− t
3λe

)
(11)

where D1 is the initial diameter of the filament at
the beginning of the exponential decrease, G is the
elastic modulus, and λe is the elongational relaxation
time, which is related to the constant elongation rate
ε̇ = 2/ (3λe) (see also Eq. 6).

Exponential thinning for viscoelastic fluids can also
result if an exponentially increasing normal stress is
assumed instead of σzz = 0 (Clasen et al. 2006a). Clasen
et al. (2006a) stated that σzz increases with the same
time constant as D(t). Then Eq. 11 has to be corrected
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by a factor of 4−1/3 ≈ 0.63, but the elongational relax-
ation time λe remains unaffected.

There is no simple universal relationship between
this characteristic elongational relaxation time and
shear relaxation time. For a series of PIB solutions,
λe ≈ 3λs was reported, with λs defined as an average
shear relaxation time (Liang and Mackley 1994). For PS
Boger fluids with concentrations c ≈ c*, elongational
relaxation times λe close to the Zimm relaxation time
λZ were found (Bazilevskii et al. 1997); but on the
other hand, it was clearly shown for PEO as well as
PS solutions that λe can vary drastically even at c < c*
and λe/λZ values between 0.1 and 10 have been doc-
umented (Tirtaatmadja et al. 2006; Christanti and
Walker 2001a, b; Clasen et al. 2006a, b). Oliveira et al.
(2006) related λe to the longest relaxation time λs

estimated from small amplitude oscillatory shear and
found λe ≈ λs PEO solutions with c ≈ c*. Arnolds et al.
(2010) observed that λe/λs ≤ 1 and strongly decreases
with increasing c for PEO solutions with c* < c < ce

and attributed this to the large deformation the solu-
tions experience during filament thinning. They used
a simple factorable integral model including a single
relaxation time and a damping function to calculate
λe/λs and obtained good agreement with experimental
results.

Other more complex systems like surfactant solu-
tions forming entangled wormlike micelles, polyelec-
trolyte complexes in solution or aggregated acrylic
thickener solutions also exhibit relaxation time ratios
λe/λs < 1, but these systems are supposed to undergo
structural changes in strong elongational flow (Bhardwaj
et al. 2007; Kheirandish et al. 2008; Willenbacher et al.
2008).

Finally, it should be mentioned that PEO solutions
with c > ce still form cylindrical filaments, but the
time evolution of the filament diameter is no longer
exponential and cannot be characterized by a single
relaxation time λe (Arnolds et al. 2010).

Determination of the axial force in a horizontally
stretched filament

A fluid filament is bent when gravity is acting in radial
direction and the axial force within the liquid can be
calculated from the bending line. Figure 2 shows a
section of a liquid filament with infinitesimal length,
ds, and the acting gravity force, dFG. The axial force
is generally not constant, which is considered in the
contribution of the infinitesimal force, dF, between the
left and right edge of the pictured thread. In order to
evaluate the axial force, all forces are balanced with

Fig. 2 Forces in a tilted liquid thread (gray) with infinitesimal
length ds

respect to a (x, y) coordinate system fixed in space.
Figure 3 presents the constructional realization of the
tilted CaBER method and the bent liquid filament.

It is clearly shown in Fig. 2 that the force balances in
x- and y-direction results in dFx = 0 or Fx = C1, where
C1 is a constant of integration and dFy = dFG. The
gravity force is proportional to the volume dV and is
calculated assuming constant diameter D and density ρ:

dFG = g dm = ρg dV = π

4
ρgD2 ds. (12)

Fig. 3 a The constructional realization of the tilted CaBER
method. b The bent liquid filament
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Furthermore, ds can be written as

ds =
√

(dx)2 + (dy)2 = dx

√
1 +

(
dy
dx

)2

(13)

and finally

dFy

dx
= dFG

dx
= π

4
ρgD2

√
1 + (y′)2 (14)

where y′ is the first derivative of the bending line y with
respect to x. The left side of Eq. 14 is obtained from the
geometrical ratio

Fx

Fy
= dx

dy
⇒ dFy

dx
= Fx y′′. (15)

Combining Eqs. 14 and 15 yields the differential
equation for the bending line of the so called torque-
free curved beam (see also Gross et al. 2009):

y′′ = πρgD2

4Fx

√
1 + (y′)2. (16)

We use the substitutions y′ = u and y′′ = u′ to solve
the differential Eq. 16, and we choose the position of
maximum deflection as point of reference to calculate
the constants of integration. Thus, we get the second
derivative of the bending line y′′ as a function of the
x-position and the force component Fx:

y′′ = πρgD2

4Fx
cosh

(
πρgD2

4Fx
x
)

. (17)

The absolute value of the force F can be calculated
as a function of Fx and x analogous to the approach
taken in Eq. 13, using Eq. 15 and the identity cosh2(ϕ) −
sinh2(ϕ) = 1.

F = Fx cosh
(

πρgD2

4Fx
x
)

(18)

Equations 17 and 18 can be developed in Taylor series.
Taking into account the first two terms (O(2)), the axial
force F is no longer a function of the position x and is
given by

F = πρg
4w′′ D2. (19)

For sake of clarity, we use the symbol w for the
approximated bending line and w′′ for its second
derivative.

The data evaluation is based on a least square
approximation of the bending line by using a second
order polynomial and calculating the constant second
derivative w′′ to be inserted in Eq. 19. However, a

constant diameter is assumed so far. This disadvantage
can be avoided using the deflection of the liquid thread
instead of the curvature of the bending line. Then, in-
tegrating Eq. 19 twice yields the following relationship
between the axial force and the diameter D(t, x):

F = πρg
4w

x∫
0

x̃∫
0

D
(
x̂
)2dx̂dx̃. (20)

The double integral in Eq. 20 can be solved numeri-
cally without any fitting of the bending line or any other
assumptions.

We estimate the approximation error, which may be
defined as follows:

β = 1 − w/y (21)

where y is the true and w the approximated bending
line. For given F and D, Fx is calculated numerically
in order to estimate the approximation error β. Lines
of constant β are shown in Fig. 4 for a cylindrical
fluid filament with density ρ = 1 g/cm3 and length
2x = 12 mm. For the experiments presented here, β

was always below 0.1 %. It should be noted that the
length of the filament has a drastic influence on the
approximation error. For example, doubling the length
of the filament to 24 mm while leaving the other para-
meters unchanged results in 1 % < β < 10 %.
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Fig. 4 Lines of constant approximation error β = 1 − w/y in the
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Experimental realization

The (tilted) CaBER device

The tilted CaBER method has been realized by
mounting a commercial CaBER-1 (Thermo Scientific,
Karlsruhe) on a customized L-shaped aluminum con-
struction in order to rotate the whole device by 90◦, as
shown in Fig. 3a. Thus, the liquid thread is stretched
in horizontal direction and bents due to the action of
gravity (Fig. 3b).

The device is equipped with plates of diameter
D0 = 6 mm. The liquid bridge is created by separating
the plates from a displacement of hi = 0.51 mm or
hi = 0.75 mm to a final displacement of hf =6.5 mm or
hf =11.5 mm within a constant strike time of ts =40 ms.

The upper plate or, in case of the tilted experi-
ment, the left plate reaches its final position at time
t1 = t0 + ts where the filament diameter is referred to
D1 = D(t1). This notation considers the mismatch be-
tween time t0 when the experiment starts and time t1
when the capillary thinning begins. The thinning of
the filament is recorded using a high-speed camera
(Photron Fastcam-X 1024 PCI), a telecentric objec-
tive (MaxxVision TC4M 16, magnification: ×1) and a
blue telecentric background light (Vision & Control,
TZB30-B) as described by Niedzwiedz et al. (2009).
The experimental setup allows observations within a
resolution of 1,024 × 1,024 px (1 px ≈ 16 μm) and a
frame rate of 1,000 fps. We assume that at least two
pixels are needed for a reliable determination of the
filament diameter, and we do not consider diameters
lower than 32 μm. Each individual image is analyzed
in order to determine the upper and lower edge of
the filament. Here, we have taken care that edges are
detected properly correct without any impaired results,
which can occur due to pixel fault (too bright or dark
pixel) of the camera or defective image recognition.
Therefore, we have implemented an automatic proce-
dure in MATLAB to examine each image individu-
ally relating to two aspects: the absolute value of the
determined filament diameter must be lower than the
diameter of the plates used and the maximum accept-
able slope of the diameter is (dD/dx)max = 0.1. All data
points which do not satisfy these conditions are ignored
in subsequent calculations.

Therewith, the experimental determined bending
line or neutral axis (see also Fig. 3b) is calculated to
apply Eqs. 19 and 20 for the force calculation The
neutral axis is named W, this experimental value cor-
responds to the model value w in the case of the
approximated theory and y in the case of the general
theory. Regardless of the applicability of Eqs. 19 and

20, which will be discussed in more details below, the
force calculation from the bending line (Eq. 20) re-
quires a further treatment of the measured data. The
insufficient horizontal adjustment of the CaBER device
in a range of a few micrometers and a shear flow
perpendicular to the axial filament direction (double
arrows in Fig. 3b) in the contact areas between the
fluid filament and the CaBER-plates (which can differ
for each plate) induced a different position of filament
for the left and the right edge in the tilted experiment.
Therefore, we carried out a baseline correction for our
data, which is based on the assumption of filament
symmetry relative to the point of maximum deflection
and contains the following strategy. We calculate the
first derivative of the filament diameter dD/dx and
determine the section where dD/dx < 0.01. The two
discrete dD/dx values which are nearest to 0.01 are
named L1 for the left side and R1 for the right side
of the filament (Fig. 5a). These values define the bor-
ders for the baseline correction. Then the next five
points in positive x-direction are considered, and the
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average value WL = ∑5
i=0 W(L1+i)/6 is calculated; then

WR = ∑5
i=0 W(R1−i)/6 is obtained analogously aver-

aging over six points starting from W(R1) going into
negative x-direction. Finally, the baseline BL is defined
as the line connection of WL and WR (Fig. 5b). Then
the corrected bending line Wcorr is calculated according
to Wcorr = W − BL and the lowest point of Wcorr is
chosen as point of reference so that (Wcorr)min = 0 is
guaranteed. Finally, the force is calculated applying
Eq. 20. It has to be noted that the baseline correction
has no visible influence for the force calculation based
on Eq. 19.

Sample preparation and characterization

In this study, we used two different Newtonian model
systems and one viscoelastic system. The first New-
tonian system was composed of fructose (Carl Roth
GmbH, Karlsruhe, Germany) solutions with mass frac-
tions between 76 and 81 % in an aqueous mixture
of 0.1 wt.% Tween20 (Carl Roth GmbH, Karlsruhe,
Germany). The samples were stirred and heated for
3 h using a magnetic stirrer and were measured
within 2 days to prevent recrystallization of the highly
concentrated solutions (c ≥ 80 %). Zero shear vis-
cosities η0 were determined from steady state mea-
surements using a MARS II rotational rheometer
(Thermo Scientific) equipped with cone plate geometry

(60/35 mm in diameter and 1◦ cone angle) at 20 ◦C.
The surface tension (measured with a platinum–iridium
Wilhelmy-plate mounted on a DCAT 11, DataPhysics
tensiometer) was constant for all samples within exper-
imental error and was determined to � ≈ 62.8 mN/m,
which is approximately 20 mN/m lower than the surface
tension of the pure aqueous fructose solutions. There-
fore, the addition of surfactant has two effects: the
filament lifetime of the fructose solutions is increased
and the surface tension exhibits the same value as for
the PEO solutions describe below. The second New-
tonian system were mixtures of silicon oil AK50000
in AK1000 (both Wacker Chemie AG, Munich,
Germany) with mass fractions between 0 and 100 %.
Silicon oils are obviously non-Newtonian fluids, but
they exhibit Newtonian flow behavior in CaBER ex-
periments because the longest relaxation time λs is
much smaller than the filament lifetime (compare Fig. 8
and data in Table 1). The elasto-capillary number Ec
(Anna and McKinley 2001; Clasen 2010) provides a
quantitative criterion to estimate this effect.

Ec = 2λs�

ηs D
(22)

It compares the viscous timescale tv = ηs D/2� with
the timescale of elastically controlled thinning, assumed
as the longest shear relaxation time λs which was

Table 1 Physical properties of the measured model systems

Type c/% ηs,0/Pa s λs/ms �/mN/m ρ/g cm−3 Ecmax

Fructose/Tween20 76.0 0.88 ± 0.01 – 61.8 ± 2.3 1.380 –
77.0 1.19 ± 0.03 – 64.4 ± 1.9 1.385 –
78.0 1.64 ± 0.08 – 62.2 ± 0.7 1.390 –
79.2 2.47 ± 0.05 – 61.9 ± 0.3 1.398 –
80.0 3.59 ± 0.07 – 62.0 ± 0.8 1.402 –
81.0 5.00 ± 0.11 – 62.4 ± 0.6 1.420 –

AK50000 0 1.04 ± 0.01 0.19 ± 0.05 20.8 ± 0.5 0.972 0.2
20 2.97 ± 0.01 0.82 ± 0.07 0.4
40 8.11 ± 0.07 1.71 ± 0.03 0.3
60 17.68 ± 0.23 3.26 ± 0.05 0.2
80 34.11 ± 0.41 4.63 ± 0.12 0.2

100 60.27 ± 1.18 5.97 ± 0.10 0.1
PEO 106 g/mol 1.0 0.04 ± 0.01 9.7 ± 1.3 61.7 ± 0.6 0.992 935

1.5 0.14 ± 0.02 26 ± 2 62.7 ± 0.3 0.992 728
2.0 0.38 ± 0.01 54 ± 3 61.7 ± 0.4 0.991 548
2.5 0.94 ± 0.02 110 ± 8 62.8 ± 0.1 0.994 459
3.0 2.01 ± 0.06 189 ± 8 62.8 ± 0.6 0.993 369
3.5 4.10 ± 0.17 340 ± 15 62.5 ± 0.2 0.994 324
4.0 8.58 ± 0.30 425 ± 21 62.8 ± 0.4 0.996 194
4.5 12.97 ± 0.43 635 ± 27 61.0 ± 0.8 1.000 187
5.0 25.46 ± 0.66 1005 ± 31 57.5 ± 0.5 1.005 142
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determined by small amplitude oscillatory shear exper-
iments according to

λs = lim
ω→0

G′

G′′ω
(23)

using a Physica MCR 501 (Anton Paar) equipped with
cone plate geometry (50-mm diameter and 1◦ cone
angle) at 20 ◦C.

Elastically driven capillary thinning sets in when
Ec ≈ 1. For the silicon oil mixtures investigated here,
the maximum elasto-capillary number ECmax were
calculated using the minimal observable diameter of
Dmin = 32 μm. In all cases investigated here, Ecmax 
 1
was detected, corresponding data are summarized in
Table 1.

Therefore, silicon oils are a useful Newtonian model
system for CaBER experiments. The surface tension
was only measured for pure AK1000 due to the high
viscosity of the other samples, and we assumed a con-
stant surface tension for all silicon oil mixtures.

PEO solutions with polymer mass fractions between
1 and 5 % were used as viscoelastic model system.
The polymer powder (Aldrich Chemical Co., UK) had
a weight average molecular weight of 106 g/mol and
was dissolved in distilled water by means of shaking.
The samples were stored at 7 ◦C up to the point of
measurement. The surface tension of the PEO solutions
is � ≈ 62.4 mN/m and independent of polymer concen-
tration up to c ≈ 4 %. A lower surface tension was
observed for higher polymer concentration, probably
due to systematic errors inferred from the high sample
viscosity.

All data, including the density of the samples de-
termined using a pycnometer with a total volume of
10.706 cm3 at 20 ◦C, are summarized in Table 1.

Results and discussion

Validation of the force calculation method

Figure 6 shows typical results of force calculation from
gravity-driven bending of horizontally stretched fluid
filaments as a function of diameter. The squares rep-
resent the 2.5 % PEO solution which behaves like a
typical weakly viscoelastic fluid, indicated by a cylin-
drical thread in the CaBER experiment. The forces cal-
culated using Eq. 20 (open symbols) and Eq. 19 (closed
symbols) are identical within experimental uncertainty.
Therefore, the simplified force calculation method, and
particularly the parabolic fit of the bending line, yields
good results as long as the thread is cylindrical.
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Fig. 6 Measured force F as a function of the diameter for the end
of the filament thinning (measurement properties, hi = 0.51 mm,
hf = 11.5 mm). Closed symbols represent data evaluation, using
Eq. 20; and open symbols represent data evaluation, using Eq. 19,
for a 2.5 % PEO solution (squares) and silicon oil AK50000
(triangles)

The Newtonian silicon oil AK50000 forms slightly
concave filaments. The calculated forces (triangles in
Fig. 6) differ from each other due to the non-constant
diameter. The force values calculated using the numeri-
cal integration of the diameter (Eq. 20), represented by
closed symbols, are significantly larger than the force
values calculated by Eq. 19 with the assumption of
constant diameter (open symbols). The corresponding
Trouton ratios Tr defined as the ratio of the true elon-
gational viscosity, calculated by applying Eq. 7, and the
shear viscosity are Tr = 3.2 when the force is calculated
according to Eq. 20 and Tr = 2.0 if Eq. 19 is applied.
Of course, the correct Trouton ratio is three for a New-
tonian fluid. This demonstrates that the filament cur-
vature has to be taken into account for non-cylindrical
filaments and as a consequence, we determine the force
only by applying Eq. 20 for all cylindrical and non-
cylindrical threads.

Figure 7 (left) shows the force ratio X as a function
of diameter calculated directly from the force mea-
surements according to Eq. F2 for three silicon oil
mixtures. For all samples investigated here, X strongly
decreases with decreasing diameter to a constant final
value X∞. This decrease is associated with the initial
deflection of the liquid tread. The critical filament
diameter, where X∞ is reached, is shifted to lower
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Fig. 7 Left Force ratio as a
function of diameter for
AK50000 in AK1000 mixture
for three different
concentrations given in the
diagram. Right Image
sequence of the deflection
during the capillary breakup
in the tilted CaBER
experiment for the 20 %
AK50000 mixture
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values with increasing AK50000 concentration and cor-
respond to the inflection point of the filament diameter
vs. time curves, shown in Fig. 8. The low viscous silicon
oil mixture including of 20 % AK50000 additionally
exhibits a sharp minimum before the constant X∞ value
is reached. This initial variation of X is attributed to
a wave traveling through the filament after the plates
have reached their final position. This wave results in a
shift of the point of maximum deflection as shown in the
images in Fig. 7. Image D where the filament deflection
is symmetric corresponds to the diameter where X∞ is
reached. This finding is typical for low viscous New-
tonian fluids with ηs < 15 Pa s. For the viscoelastic
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Fig. 8 Diameter as a function of time for the AK50000 in
AK1000 mixtures (hi = 0.51 mm, hf = 11.5 mm)

PEO solutions investigated here, a wave through the
filament was only observed at a zero shear viscosity
of ηs = 0.04 Pa s, corresponding to a concentration of
1.0 %. This phenomenon did not occur for solutions
with higher PEO concentrations and this is attributed
to the well-known stabilization effect of the stretched
polymer coils (Lenczyk and Kiser 1971; Tirtaatmadja
et al. 2006).

The consideration of the final force ratio allows for
another way for the validation of the force calculation
method. On one hand, X∞ is determined directly from
the force measurement as described above. On the
other hand, X∞ can also be calculated from the slope
of D(t) which is proportional to −��/ηs (see Fig. 8),
as expected for Newtonian fluids. Using Eq. 10 and the
additionally measured zero shear viscosity, the numer-
ical factor � is linked to the force ratio X∞. Figure 9
shows the experimentally determined force ratios, as a
function of viscosity for the two series of Newtonian
fluids. Here, silicon oil mixtures (squares) were mea-
sured with an initial height of hi = 0.51 mm and a
final height of hf = 11.5 mm and the fructose/Tween20
solutions (triangles) were measured with hi = 0.75 mm
and hf = 6.5 mm. The large scale error bars of the
fructose/Tween20 solutions are caused by the high
capillary velocity �/ηs, and, hence, a short filament life-
time. The force ratio values determined from the diam-
eter (open symbol) and the force (filled symbols) using
Eq. 20 are identical within experimental error. Con-
sidering all force measurement experiments, we obtain
an average force ratio X∞ = 0.728 ± 0.059, which is in
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sent X∞ values using the calculated force, and the open symbols
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excellent agreement with the solution of Papageorgiou
(1995) and which is far away from the solution of
Eggers (1993, 1997) and Brenner et al. (1996). All
these experiments validate the tilted CaBER method
including the force calculation from Eq. 20 as an
accurate and robust method for the determination of
the axial force in a fluid filament during capillary thin-
ning elongational flow.

Sign of the axial normal stress

From a theoretical point of view, the minimum σzz/|σrr|
value is −1 because lower values would result in neg-
ative elongational viscosities. Figure 10 shows the di-
mensionless normal stress ratio σzz/|σrr| as a function
of diameter for a silicon oil mixture of 60 % AK50000
in AK1000 (filled squares) and a 3.5 % PEO solution
(open triangles).

During the initial thinning period dominated
σzz/|σrr| strongly decays in both cases. This decay is
faster for fluids of lower viscosity and is presumably due
to inertial effects. After this induction period σzz/|σrr|
reaches a constant value σzz/|σrr| = −0.54 ± 0.12 for all
Newtonian fluids. The negative sign corresponds to a
compressive stress, which causes the pronounced
deflections of Newtonian filaments. Such compressive
stresses are not observed for the PEO solutions and,
hence, the deflection is less pronounced compared
to the Newtonian samples discussed in the previous
section. The induction period is much shorter for all the
investigated PEO solutions than for the silicon oils
due to the damping properties of the polymer coils.
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Fig. 10 Normal stress ratio for a 3.5 % PEO 106 g/mol solution
(f illed squares) and a 60 % AK50000 mixture (open triangles)

Accordingly, the asymptotic value for the normal
stress ratio is reached much faster. A limiting value
σzz/|σrr|≈0 is observed for the PEO solutions with
concentrations lower than 4 %. For these sparsely
concentrated solutions, it is not possible to check the
assumption of Clasen et al. (2006a) that σzz increases
exponentially due to the measuring accuracy and
the scatter of the data points. Anyway, σzz must be
significantly smaller than σrr, and in this case, the widely
used assumption σzz = 0 obviously is valid for the
evaluation of the elongational viscosity from CaBER
measurements. But constant values σzz/|σrr| > 0
are observed for higher polymer concentrations
as discussed in the next section. This finding is
the experimental proof of significant exponentially
increasing axial normal stresses as predicted by Clasen
et al. (2006a).

σzz

|σrr| = const. ⇒ σzz ∝ 1
D

∝ exp
(

t
3λe

)
(24)

The normal stress ratio is related to the force ratio X
discussed in the previous section. The force balance
(Eqs. 1 and 3) yields:

σzz

|σrr| = 2
(

F
π D�

− 1
)

. (25)
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Combining Eq. 25 with the definition of the force
ratio (Eq. 2) results in

X = 1
2

σzz

|σrr| + 1. (26)

Therefore, the sign of σzz is obvious from the force
ratio, as discussed above. For vanishing axial stresses,
the force ratio is one. X < 1 values correspond to
a compressive axial normal stress, and X > 1 values
correspond to a tensile normal stress.

Applying the tilted CaBER method
to non-Newtonian fluids

Recently, the behavior of semi-dilute and concentrated
entangled PEO solutions in regular CaBER experi-
ments has been discussed in detail (Arnolds et al. 2010).
They obtained c* ≈ 0.4 % and ce ≈ 2.5 % for PEO
with Mw = 106 g/mol from their steady and small am-
plitude oscillatory shear experiments. Here, we focus
on the variation of the axial force in this concentration
range investigating PEO solutions with concentrations
between 1 and 5 %.

The filament lifetime of these PEO solutions
strongly increases with polymer concentration. Diam-
eter data are shown in Fig. 11a. The PEO solutions
with c < 4 % exhibit the typical exponential thinning
(lines in Fig. 11a), with characteristic relaxation time
λe, calculated according to Eq. F11. For higher polymer
concentrations, the filaments are still cylindrical but do
not exhibit an exponential thinning regime and, hence,
λe cannot be determined. The findings are in good
agreement with Arnolds et al. (2010). Corresponding
force measurement data are shown in Fig. 11b. The
force F decreases monotonically with time to a minimal
value of about 1 μN.

Calculated force ratios as a function of diameter D
for PEO solutions with c = 3.5 % and c = 5.0 % as well
as for the Newtonian silicon oil mixture AK50000 60 %
are shown in Fig. 12a. The measured force ratios for
the PEO solutions investigated here are always higher
than the force ratio for the Newtonian liquid. Remark-
ably, this finding disagrees with the observation of
Clasen (2010) for capillary breakup of semi-dilute poly-
mer solutions. He observed that the thinning process
splits up into four regimes: (1) early thinning which
is controlled by gravitational sagging; (2) Newtonian
thinning behavior (viscocapillary) described by Eq. 9;
(3) extensional thinning (still viscocapillary) described
by a power law; and finally (4) elasto-capillary thinning
described by Eq. 11. It is clearly shown in Fig. 12a
that the X(D) data do not support the existence of
Newtonian thinning regime because the Newtonian

limit of X∞ = 0.728 ± 0.059 is never reached during
the thinning process. This emphasizes that the inter-
pretation of the D(t) data (Fig. 11a) as, e.g., done by
Clasen (2010) is not unambiguous since the correspond-
ing force ratio is not considered. Therefore, the force
measurement gives additional information for the inter-
pretation of the thinning behavior of liquid filaments.
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properties, hi = 0.51 mm, hf = 11.5 mm). a Diameter as a func-
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The extracted final force ratios X∞ versus concen-
tration c for the investigated PEO solutions are shown
in Fig. 12b. Remarkably, this ratio is one for the
clearly elasto-capillary exponentially thinning solutions
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Fig. 12 a Force ratio as a function of diameter. b Final force ratio
as a function of concentration c for two different initial heights
hi = 0.51 mm (f illed squares) and hi = 0.75 mm (open triangles).
The dashed line represents a vanishing axial normal stress

(c < 3.5 %). X∞ = 1 means that there is no axial stress
in the filament during capillary thinning. Therefore,
the simplified approach of calculating the elongational
viscosity according to Eq. 8 is valid for these weakly
elastic PEO solutions. However, the final force ra-
tio deviates significantly from X∞ = 1, indicating that
σzz = 0 and increases monotonically for concentrations
c ≥ 4 %. Non-vanishing σzz values for non-Newtonian
fluids are directly detected here for the first time per-
forming CaBER experiments. This clearly indicates the
limitations of the widely used, simplified data analysis
for calculating the elongational viscosity (Eq. 8) and
demonstrates that an accurate force measurement is
mandatory for a determination of absolute ηe values
(Eq. 7) from CaBER experiments.

The concentration where X∞ begins to differ from
unity (c = 4 %) is much greater than the overlap con-
centration of c* and roughly coincides with the entan-
glement concentration ce. It seems that a significant
axial normal stress is due to the entanglements present
in these solutions and gives rise to the observed non-
exponential thinning of the filament diameter.

In Fig. 13, the elongational viscosity ηe obtained
from the force measurement is compared to the ap-
parent elongational viscosity ηe,app calculated from �

and D(t) using the σzz = 0 assumption for a 4.0 % PEO
solution (Fig. 13a) and a 5.0 % PEO solution (Fig. 13b).
Here, we have smoothed the diameter data applying
the floating average method in order to calculate the
elongation rate numerically.

In the initial period of capillary thinning right after
the upper plate has reached its final position (t > t1),
the elongational viscosity ηe obtained from the force
measurements goes through a sharp maximum, which
does not appear in ηe,app. Similar results were ob-
tained for all PEO solutions investigated here, but the
apparent viscosity maximum is less pronounced for
PEO solutions with higher polymer concentration.

The physical interpretation of this phenomenon is
not yet clear, but it might be due to inertial effects as
already discussed above (see “Validation of the force
calculation method” and “Sign of the axial normal
stress”). It also has to be noted that the elongation
rate goes through a distinct minimum during this period
of thinning. This topic requires further investigations
which are beyond the scope of this paper.

The time when ηe reaches its minimum corresponds
to the time when the force ratio X reaches its limit-
ing value. For the PEO solutions with c ≤ 4 %, the
time also corresponds to the inset of the exponential
thinning. In this case, the limiting value is independent
of polymer concentration (X∞ = 1.1 ± 0.1). During the
final stage of capillary thinning, both elongational vis-
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cosity values ηe and ηe,app strongly increase during the
capillary thinning due to the well-known progressive
entropic resistance to the deformation of the polymer
chains; but in this case, ηe,app is a reasonable approx-
imation for the true elongational viscosity. For the
5 % PEO solution with X∞ > 1, the apparent elon-
gational viscosity during the final stage of thinning is

significantly lower than the true value obtained from
the force measurements.

Conclusions

We have introduced a new way of performing CaBER
experiments named tilted CaBER method. This
method comprises a horizontal stretching of fluid fila-
ments and allows for a determination of the axial force
in the liquid bridge from the gravity-driven bending
of the filament applying chain bending theory. This
method provides reliable values for the axial force in
a liquid filament in a range of N = 1,000–0.1 μN and
allows for a determination of the true elongational vis-
cosity without additional assumptions or specific con-
stitutive equations. For Newtonian fluids, the existence
of a negative axial normal stress was proved experi-
mentally, and the solution of Papageorgiou (1995) was
confirmed for the linear thinning of Newtonian liquids
by using two different sets of samples covering a viscos-
ity range of ηs = 0.9–60 Pa s. The tilted CaBER method
has been applied to non-Newtonian PEO solutions with
concentrations c > c* and c > ce. The assumption of
vanishing axial normal stress for evaluating CaBER
experiments was confirmed for solutions with c < ce,
and a positive axial normal stress was detected for
concentrations above the entanglement concentration.
In this case, the time evolution of the filament diameter
no longer follows a simple exponential decay law. The
elongational viscosity calculated from the measured
force exhibits the well-known elongational hardening
behavior also observed for other polymer solutions
(Sridhar et al. 1991; Solomon and Muller 1996).
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Appendix

Equation 7 for the calculation of the elongational
viscosity in axial direction is only valid for slender
filaments as investigated in this paper. Filament curva-
ture must be taken into account in case of strongly non-
cylindrical filaments which are typical for, e.g., yield
stress fluids. At the position of the neck, the equilib-
rium condition in radial direction then reads as follows:

σrr = −�

(
2

Dmid
− 1

|Rc|
)

(27)
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where Dmid is the diameter and Rc is the radius of
curvature in axial direction at the neck. The expression
for σzz does not change, and accordingly, the true elon-
gational viscosity is given by

ηe = σzz − σrr

ε̇
= 1

dDmid/dt

(
� − 2F

π Dmid
+ �Dmid

2 |Rc|
)

.

(28)
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