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Abstract The transient elongation behavior of entangled
polymer and wormlike micelles (WLM) solutions has been
investigated using capillary breakup extensional rheometry
(CaBER). The transient force ratio X = 0.713 reveals the
existence of an intermediate Newtonian thinning region for
polystyrene and WLM solutions prior to the viscoelastic
thinning. The exponential decay of X(t) in the first period
of thinning defines an elongational relaxation time λx which
is equal to elongational relaxation time λe obtained from
exponential diameter decay D(t) indicating that the initial
stress decay is controlled by the same molecular relaxation
process as the strain hardening observed in the terminal
regime of filament thinning. Deviations in true and appar-
ent elongational viscosity are discussed in terms of X(t). A
minimum Trouton ratio is observed which decreases expo-
nentially with increasing polymer concentration leveling off
at Trmin = 3 for the solutions exhibiting intermediate New-
tonian thinning and Trmin ≈ 10 otherwise. The relaxation
time ratio λe/λs, where λs is the terminal shear relax-
ation time, decreases exponentially with increasing polymer
concentration and the data for all investigated solutions col-
lapse onto a master curve irrespective of polymer molecular
weight or solvent viscosity when plotted versus the reduced
concentration c[η], with [η] being the intrinsic viscosity.
This confirms the strong effect of the nonlinear deformation
in CaBER experiments on entangled polymer solutions as
suggested earlier. On the other hand, λe ≈ λs is found for
all WLM solutions clearly indicating that these nonlinear
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deformations do not affect the capillary thinning process of
these living polymer systems.
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Introduction

Capillary breakup extensional rheometry (CaBER) is a com-
mon technique for the determination of the elongational
behavior of low-viscosity fluids. This simple and versa-
tile method has been suggested more than 20 years ago
(Bazilevsky et al. 1990; Entov and Hinch 1997; Bazilevsky
et al. 2001); and is commercially available (Haake CaBER
1, Thermo Scientifics). In contrast to other techniques,
CaBER allows for large Hencky strains up to εmax ≈ 8...13
which are of great significance to industrial practice. The
CaBER experiment is based on the creation of an instable
liquid bridge. After applying a step strain within a short
strike time in a range of typically ts ≈ 20...100 ms, the
diameter of the liquid filament decreases due to the act-
ing surface tension. Monitoring of the filament diameter as
a function of time allows for the determination of charac-
teristic elongational flow properties such as the apparent
elongational viscosity (Anna and McKinley 2001a), the
elongational relaxation time (Entov and Hinch 1997; Clasen
2010), or the elongational yield stress (Niedzwiedz et al.
2009; Niedzwiedz et al. 2010; Martinie et al. 2013).

In a commercial CaBER setup, the only measured quan-
tity during filament thinning is the diameter decay D(t) at
a single position in the filament. Different extensions of
the experimental setup are reported in the literature such
as optical shape recognition using a (high-speed) camera
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(Christanti and Walker 2001; Niedzwiedz et al. 2009;
Nelson et al. 2011; Gier and Wagner 2012; Sattler et al.
2012), force measurement during initial step strain (Klein et
al. 2009) as well as during the whole capillary thinning pro-
cess (Sachsenheimer et al. 2012). Unfortunately, controlling
the temperature of the thinning liquid thread is not possi-
ble due to the lack of an appropriate temperature control
unit for CaBER and, therefore, capillary thinning is only
performed at room temperature. In a study on polyacryloni-
trile solutions, samples have been preheated and an elevated
constant temperature was assumed due to the short time of
experimentation although these measurements were done
at room temperature (Tan et al. 2012). In contrast, exten-
sional rheometry of polymer melts has been performed at
elevated temperatures. The “universal extensional rheome-
ter” of (Münstedt 1975, Münstedt 1979; Münstedt et al.
1998) stretches polymer melt filaments in a tempered sil-
icon oil bath in order to maintain an accurate temperature
control spatially as well as temporally. Furthermore, a fil-
ament stretching extensional rheometer (FiSER) has been
equipped with an oven (Bach et al. 2003) in order to deter-
mine the elongational properties of polymer melts up to
a temperature of T = 200◦C. The length of the filament
is continuously increased; therefore, FiSER experiments
require very large devices and an accurate temperature con-
trol is complicated due to convection in the oven. To reduce
a vertical temperature gradient, (Bach et al. 2003) used six
temperature transducers combined with eight heat elements
as well as a nitrogen flow through the oven smearing out
temperature gradients. To the best of our knowledge, no
capillary thinning experiments under controlled temperature
conditions other than room temperature have been reported
so far.

The thinning behavior of a liquid thread is controlled by
the capillary force and viscous or viscoelastic forces. The
interplay of these forces results in characteristic diameter
vs. time curves observed experimentally and predicted the-
oretically for different types of fluids, e.g., Bingham plastic,
power law, Newtonian fluid, or viscoelastic fluid. However,
the classical way of calculating the elongational viscosity
from CaBER experiments is based on the assumption of
vanishing axial normal stress (axial force is only caused
by the surface tension). Recently, we introduced the so-
called tilted CaBER method (Sachsenheimer et al. 2012)
to determine the true axial force during the capillary thin-
ning process. In this type of experiment, the filament is
stretched horizontally and the axial force can be determined
from gravity-driven bending of the filament in a range of
F = 1,000–0.1 µN.

Using the CaBER technique, we want to improve
our knowledge of the self-controlled thinning behavior
of concentrated and mostly entangled polymer solutions.
Therefore, we give first a brief introduction into the

theory of filament thinning and CaBER experiments of
non-Newtonian fluids focusing on the elongational relax-
ation time and the true elongational viscosity. Then, we
present the experimental setup and give a short overview
of the samples used including preparation and characteri-
zation. Following with the experimental part, we analyze
the effect of different geometrical setups. The transient
force ratio including its effect on the elongational viscos-
ity is discussed. After this, we discuss the elongational
relaxation time and the relaxation time ratio including a uni-
versal scaling for polymer solutions. Finally, we compare
CaBER results for some surfactant solutions with filament
stretching (FiSER) experiments and give a short conclusion.

Filament thinning and CaBER experiment

Diameter vs. time evolution during capillary thinning

Newtonian fluids form nearly cylindrical filaments. The
midpoint diameter Dmid of such a thread decreases linearly
with time t in a CaBER experiment according to the fol-
lowing (Papageorgiou 1995; McKinley and Tripathi 2000):

Dmid(t) = D1 −�
�

ηs
t (1)

where D1 is the initial diameter of the linear filament
thinning region (this corresponds to time t = 0 in the
model equation), � is the surface tension, ηs is the shear
rate-independent shear viscosity of the Newtonian liquid,
and � is a constant numerical factor. Neglecting inertia,
Papageorgiou (1995) predicted � = 0.1418 which was
confirmed experimentally (McKinley and Tripathi 2000;
Sachsenheimer et al. 2012) for the capillary thinning of a
Newtonian fluid.

Weakly viscoelastic fluids like dilute and semi-dilute
solutions of linear, flexible polymers form perfect cylin-
drical filaments, and their diameter decreases exponentially
with time in CaBER experiments (Bazilevsky et al. 1990;
Renardy 1994, 1995; Brenner et al. 1996; Bazilevsky et al.
1997; Eggers 1997; Liang and Mackley 1994; Entov and
Hinch 1997; Kolte et al. 1999; Anna and McKinley 2001a;
Rodd et al. 2005; McKinley 2005; Ma et al. 2008; Tuladhar
and Mackley 2008; Miller and Cooper-White 2009; Clasen
2010; Arnolds et al. 2010; Vadillo et al. 2010, 2012; Campo-
Deaño and Clasen 2010; Sachsenheimer et al. 2012).
Assuming, that the force in the filament is only caused by
the surface tension, i.e., no axial normal stresses are con-
sidered (σzz = 0), the diameter vs. time curve is given by

D(t) = D1

(
GD1

2�

)1/3

exp

(
− t

3λe

)
(2)
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where D1 is the filament diameter at the time when the
exponential filament thinning sets in (this corresponds to
time t = 0 in the model equation), G is the elastic modulus,
and λe is the so-called elongational relaxation time which
depends on polymer concentration. The prefactor in Eq. 2
can differ if the σzz = 0 assumption is not fulfilled (Clasen
et al. 2006a). Evaluating the elongational relaxation time λe
seems to be easy, but technically it is not always unambigu-
ous. Generally, the exponential decay in the diameter vs.
time curves occurs at an intermediate stage of filament thin-
ning. Purely viscous stresses dominate initially, while finite
extensibility leads to an accelerated filament decay prior
the filament breakup (Entov and Hinch 1997). For entan-
gled polymer solutions, the exponential thinning region is
barely observable (Clasen 2010) or even completely absent
(Arnolds et al. 2010; Sachsenheimer et al. 2012) even if the
filament shape still remains cylindrical.

The elongational relaxation time λe has been compared
to a mean shear relaxation time defined as follows (Liang
and Mackley 1994):

λ̄s =
∑

3giλi∑
gi

(3)

which is calculated from the relaxation time spectrum which
can be obtained from small amplitude oscillatory shear
(SAOS) experiments without assuming a specific constitu-
tive equation. However, the comparison with λe was not
satisfactory: for a series of polyisobutylene (PIB) solutions;
they found λe ≈ 3λ̄s but for the fluid S1, λe ≈ 15λ̄s .

From a theoretical point of view, Entov and Hinch (1997)
analyzed the effect of a relaxation time spectrum on the
capillary thinning of viscoelastic filaments using a multi-
mode FENE model. For the so-called middle elastic times
resulting in a diameter decay given according to

D(t) = D1

[
D1

2�

N∑
i=1

gi exp

(
− t

λi

)]1/3

(4)

where gi and λi are the strength and time parameter of
the i-th component of the relaxation time spectrum and
N is the number of elements. However, it is obvious that
a simple exponential filament thinning as observed for,
e.g., weakly viscoelastic polymer solutions, can only be
observed if all modes i > 1 are relaxed and (4) reduces
to Eq. 2 with λe ≡ λ1 (longest relaxation time of the
spectrum). The difference between the diameter calculated
from Eqs. 4 and 1 is indeed decreasing with time and
less than 5 % for times t > 2.5λ1. Therefore, the higher
modes should only affect the initial nonexponential thin-
ning process. Using polystyrene-based Boger fluids, Anna
and McKinley (2001a) also showed the equivalence of the
Zimm relaxation time λZ as, e.g., defined in Rubinstein and

Colby (2003) and the elongational relaxation time deter-
mined from the exponential diameter decay. However, more
detailed experimental studies have found relaxation time
ratios λe/λZ = 0.1 ... 30 for polyethylenoxied (PEO) and
polystyrene (PS) solutions with concentrations c ≤ c∗,
where c∗ is the critical overlap concentration (Christanti and
Walker 2001; 2002; Tirtaatmadja et al. 2006; Clasen et al.
2006a; Campo-Deano and Clasen 2010; Vadillo et al. 2012;
Haward et al. 2012a). For concentrations c ≤ c∗, relaxation
time ratios λe/λZ = 1...100 have been reported (Rodd et
al. 2005; Clasen 2010; Haward et al. 2012a) for different
polymer solutions.

Finally, λe has been related to the terminal shear relax-
ation time λs estimated from SAOS in the terminal flow
region (ω → 0) according to

λs = lim
ω→0

G′

ωG′′ . (5)

λe/λs ≤ 1 values have been documented for PEO and PS
solutions with concentrations c∗ < c < ce (Oliveira et
al. 2006; Arnolds et al. 2010; Clasen 2010) where ce is
the entanglement concentration. Arnolds et al. (2010) have
quantified the effect of nonlinear deformation in CaBER
experiments using a single factorizable integral model
including a damping function which has been determined
from steady shear data. The decrease of the λe/λs ratio
with increasing polymer concentration could be predicted
quantitatively.

In short, the elongational relaxation time has been com-
pared to different molecular and shear relaxation times, but
no simple and universal correlation between these values
could be found. However, different shear relaxation times
differ from each other. Using the well-known expressions
for G′ and G′′ of the multimode Maxwell model with dis-
creet relaxation time spectrum (gi , λi), the terminal shear
relaxation time defined by Eq. 5 reads

λs,Max =
∑

giλ
2
i∑

giλi
=

∑
giλ

2
i

η0
, (6)

where η0 = ∑
giλi is the zero shear viscosity. Accord-

ingly, λs can be interpreted as the centroid of the relaxation
time distribution (Böhme 2000). Obviously, λs,Max (given
by Eq. 6) differs from the mean shear relaxation time λ̄s
suggested by Liang and Mackley (1994) and also from the
longest relaxation time λ1 of the spectrum. Using the com-
plex moduli G′ and G′′ of the Rouse and Zimm model
(Rubinstein and Colby 2003), the characteristic model time
constants can be related to the terminal shear relaxation time
(5) according to λR = 2λs and λZ = [1 − 1/ (3ν)]−1 λs ,
respectively. Here, ν is the scaling exponent associated with
solvent quality.
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Determination of the elongational viscosity from capillary
thinning experiments

The uniaxial elongational viscosity ηe is generally defined
as follows (Schuemmer and Tebel 1983):

ηe = σzz − σrr

ε̇
, (7)

where σzz is the axial normal stress in the fluid filament, σrr
is the radial normal stress, and ε̇ is the elongational rate.

Taking into account mass conversation as well as axial
and radial force balances on a cylindrical filament undergo-
ing elongation but neglecting gravity and inertia effects, (7)
yields (Sachsenheimer et al. 2012)

ηe = �

dD/dt
− 2F

πD dD/dt
, (8)

where � is the surface tension, and F the axial force in
the filament with diameter D. Unfortunately, F is not mea-
sured in standard CaBER experiments. Instead, σzz = 0
is assumed, and the axial force is calculated from the
surface tension alone (F = πD�). This results in a
simplified expression for the elongational viscosity, the so-
called apparent elongational viscosity (Anna and McKinley
2001a)

ηe,app = − �

dD/dt
(9)

which is widely used in the literature (Rothstein 2003;
Yesilata et al. 2006; Oliveira et al. 2006; Bhardwaj et al.
2007a; Sattler et al. 2007; Chellamuthu and Rothstein 2008;
Kheirandish et al. 2008; Tuladhar and Mackley 2008; Chen
et al. 2008; Yang and Xu 2008; Kheirandish et al. 2009;
Arratia et al. 2009; Miller and Cooper-White 2009; David
et al. 2009; Regev et al. 2010; Bischoff White et al. 2010;
Clasen 2010; Becerra and Carvalho 2011; Erni et al. 2011;
Rathfon et al. 2011; Nelson et al. 2011; Haward et al.
2012a; Haward and McKinley 2012b; Gier and Wagner
2012; Tembelya et al. 2012; Vadillo et al. 2012; Sankaran
and Rothstein 2012).

Deviations from the σzz = 0 assumption obviously occur
for Newtonian liquids (Liang and Mackley 1994; Kolte and
Szabo 1999; McKinley and Tripathi 2000; Sachsenheimer
et al. 2012) and polymer solutions (Clasen et al. 2006a;
Sachsenheimer et al. 2012), and this may be quantified
using the dimensionless force ratio (McKinely and Tripathi
2000; Sachsenheimer et al. 2012)

X = F

πD�
, (10)

where π�D is the force due to the surface tension of the
liquid and the σzz = 0 assumption is fulfilled as long as the
force ratio is X = 1. However, the tilted CaBER method can

be used by measuring the true elongational viscosity ηe from
CaBER experiments using Eq. 8 without any assumptions.

Measurement techniques

Capillary thinning (CaBER) measurements

We have used the commercially available Haake CaBER 1
(Thermo Scientifics, Karlsruhe, Germany) for our elonga-
tional measurements. The fluid under test is placed between
two plates of diameter D0 = 6 mm. At time t = t0, a liq-
uid bridge is created by separating the upper plate from a
initial displacement hi to a final displacement hf within a
constant strike time of ts = 40 ms using a linear stretch-
ing profile (constant velocity). Plate separation parameters
have been varied between 0.51 mm < hi < 3 mm and
7.4 mm < hf < 12 mm. At time t1 = t0 + ts , the liq-
uid thread with an initial diameter of D1 = D (t1) begins
to thin due to the acting surface tension until the filament
breaks. Filament shapes were captured using an optical
setup including a high-speed camera and telecentric illumi-
nation (Niedzwiedz et al. 2009; Sachsenheimer et al. 2012).
In order to determine the axial force in the filament, the
whole CaBER setup has been rotated by 90◦. Horizontal fil-
ament stretching experiments have always been performed
with hi = 0.75 mm and hf ≈ 11.5 mm. The axial force
F was calculated from the bending line w of the liquid
filament (Sachsenheimer et al. 2012) according to

F = πρg

4w

x∫
0

x̃∫
0

D(x̂)2dx̂dx̃, (11)

where ρ is the density and g is the gravitational constant.
For analyzing wormlike micelle solutions, the experi-

mental setup with a resolution of 16 µm has been changed
using a mirrorless interchangeable-lens camera (Nikon 1
V2) with a 14-megapixel image sensor yielding a resolution
of 2.5 µm. Gentle stretching conditions with hi = 1 mm and
hf = 8 mm have to be selected in order to create a filament.
A higher initial stretching would not yield a homogenous
liquid thread.

Temperature control unit

In order to investigate polymer solutions at different tem-
peratures, a special temperature control unit has been con-
structed. It consists of a temperature chamber mounted on
the CaBER device as shown in Fig. 1 and a temperature
sensor installed in the CaBER bottom plate next to the
sample. Special glass windows allow for capturing the fila-
ment shape using our optical setup as described above and
recording the diameter as a function of time using the laser
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Fig. 1 Picture of the temperature cell mounted on a CaBER device

micrometer of the device. The cell can also act as a sol-
vent trap. Therefore, solvent is filled into the cell creating
a saturated atmosphere to prevent evaporation of solvent
from the fluid filament even at elevated temperatures or long
filament lifetimes. In contrast to the oven of Bach et al.
(2003) where several electric heating elements have been
used, our temperature control unit is connected to a water
bath thermostat. This allows for a very precise temperature
adjustment between 5 and 90◦C with an accuracy of 0.2◦C.

Supplementary measurements

Zero shear viscosity η0 and the longest relaxation time
(according to Eq. 5) were determined from SAOS experi-
ments using a Physica MCR501 (Anton Paar, Graz, Austria)
equipped with a cone-plate geometry (50 mm diameter
and 1◦ cone angle). Surface tension � has been deter-
mined at T = 20◦C using a DCAT1 tensiometer (Data-
Physics, Filderstadt, Germany) equipped with a platinum-
iridium Wilhelmy plate within an experimental error of
�� = ±1 mN/m. Density measurements have been per-
formed using a pycnometer with a total volume of V =
10.706 cm3at T = 20◦C.

Sample preparation and characterization

PS, PEO, and cetylpyridinium chlorid/sodium salicy-
late/sodium chloride (CPyCl/NaSal/NaCl) solutions have
been used as model systems to study the elongational behav-
ior of viscoelastic, semi-dilute, and concentrated polymer

solutions (c > c∗). Polystyrene (Polymer Standards Ser-
vice, Mainz, Germany) with a weight average molecular
weight of Mw = 3 · 106 g/mol and a polydispersity index
of PDI = 1.17 has been dissolved in diethyl phthalate
(Merck, Darmstadt, Germany) with a zero shear viscosity
of η0 = 12.6 ± 0.3 mPas. Polyethylene oxide (Sigma-
Aldrich, MO, USA) with weight average molecular weight
of Mw = 1 · 106 g/mol, Mw = 2 · 106 g/mol, and
Mw = 4 · 106 g/mol has been dissolved in distilled water.
Additionally, aqueous solutions of a low molecular weight
PEO (Mw = 3.5 · 104 g/mol, in the following labeled as
PEG) with concentrations c = 8 % (η0 = 17.3± 0.1 mPas)
and c = 16.7 % (η0 = 97.0 ± 0.5 mPas) have been used
as a solvent for the PEO sample with Mw = 1 · 106 g/mol.
Aqueous PEO solutions are in the θ -state at room temper-
ature. Therefore, adding PEG will not change the solvent
quality. All polymer solutions were prepared by adding the
polymer powder to the solvent. Samples were homogenized
by means of shaking at room temperature until the solu-
tions become totally clear. Long shaking times of approx-
imately 1 month were needed for the highly concentrated
PS solutions. The surfactant solution CPyCl/NaSal/NaCl
is common model systems for linear wormlike micelles
(WLM) in the entangled state and corresponding linear
viscoelastic data are, e.g., given by Berret et al. (1993).
In addition to the reptation time scale λrep of covalently
bounded polymers, WLM break and reform with a charac-
teristic time λbr . For λbr << λrep, the rheological behavior
is described by a single Maxwell model with relaxation
time λs = √

λbrλrep (Rehage and Hoffmann 1988; Cates
1987; 1988). The CPyCl/NaSal/NaCl solutions have been
prepared following Berret et al. (1993) at molar surfactant
concentrations between 40 and 120 mM and constant salt
surfactant ratio of R = 0.5. A 0.5-M NaCl solution has been
used as solvent to ensure a constant electrostatic screening
length while varying the CPyCl and NaSal concentrations.
NaSal is strongly binding to the surfactant, and both CPyCl
and NaSal are responsible for the creation of the wormlike
structures. Therefore, we have calculated the living polymer
concentration c as the sum of the mass concentrations of
CPyCl and NaSal.

Viscoelastic behavior can be observed in a CaBER
experiment if the time scale of the elastically controlled
thinning (assumed to be the terminal shear relaxation
time λs) exceeds the viscous time scale (assumed to be
tv = η0D/2�) quantified using the dimensionless elasto-
capillary number (Anna and McKinley 2001a; Clasen
2010):

Ec = 2λs�

η0D
. (12)

Since the diameter D is a function of time, hence the
elasto-capillary number is a function of time, too. Figure 2
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Fig. 2 Initial elasto-capillary number as a function of polymer con-
centration for solutions (squares), aqueous PEO solutions with Mw =
1 · 106 g/mol (circles), aqueous PEO solutions with Mw = 2 ·
106 g/mol (diamonds), aqueous PEO solutions with Mw = 4 ·
106 g/mol (triangles), and CPyCl/NaSal/NaCl (hexagons)

shows the minimum elasto-capillary number Ec0 calculated
using the initial diameter of D0 = 6mm for PS, aque-
ous PEO, and CPyCl/NaSal/NaCl solutions investigated in
this study. The elasto-capillary number Ec decreases with
increasing polymer concentration in good agreement with
that in the literature (Clasen 2010; Sachsenheimer et al
2012) since the zero shear viscosity varies stronger with
polymer concentration than the shear relaxation time. For
low polymer concentrations, Ec is nearly constant. The crit-
ical concentration where Ec begins to decrease is equal to
the entanglement concentration ce determined from shear
viscosity data. These values are summarized in Table 1.

CPyCl/NaSal/NaCl solutions investigated here do not
show a constant Ec value for low concentrations, indicating
that all surfactant solutions are in the entangled state.

However, Ec0 < 1 values may indicate that the begin-
ning of the thinning process is controlled by viscous forces

Table 1 Entanglement concentrations ce and intrinsic viscosities [η]

Material Entanglement Intrinsic

concentration ce /% viscosity [η]/cm3 g−1

PS 2.5 295

PEO 1Mio 1.7 598

PEO 2Mio 1.3 1,027

PEO 4Mio 0.66 1,764

instead of viscoelastic as suggested by Clasen (2010) for PS
solutions.

Results and discussion

Effect of stretching ratio on the diameter vs. time curve

Low initial heights hi and high final heights hf are needed
for horizontal filament stretching experiments in order to
create a measurable deflection of the liquid thread and pre-
vent liquid dropping out of the initial gap of the plates.
Dramatically changing of the stretching parameter might
influence the thinning behavior of a liquid thread. In addi-
tion to Miller et al. (2009) and Kim et al. (2010), we studied
these effects using PEG/PEO solutions. Figure 3 shows
exemplarily the diameter vs. time curve for 1 % PEO of
Mw = 1 · 106 g/mol dissolved in a 16.7 % PEG solu-
tion using different initial (hi = 0.51 mm, hi = 0.75 mm,
and hi = 3.01 mm) and final heights (hf ≈ 8 mm,
hf ≈ 10 mm, and hf ≈ 12 mm). Filament lifetime
tf il increases with increasing initial height hi, hi but sig-
nificant differences between hi = 0.51 mm and hi =
0.75 mm cannot be observed. The highest filament lifetimes
are observed for the lowest stretching ratio (hi = 3.01 mm

and hf = 7.4 mm). Differences in tf il might be due to
differences in the capillary stress σrr (t1) = −2�/D1 right
after the upper plate has reached the end position. Higher
filament lifetimes correspond to higher D1 values (see,
for example, Fig. 3c) and therefore to lower initial radial
stresses.

An exponential decrease of the filament diameter is
clearly and easily visible allowing for a determination of the
elongational relaxation time λe according to Eq. 2. How-
ever, for higher polymer concentrations, the onset of the
exponential decay regime is shifted to lower diameters and
λe can only be determined in the final stage of thinning
close to filament breakup. Finally, at concentrations c > 4 %
(Arnolds et al. 2010), the exponential diameter decay is
no longer observable. In these solutions, a high force ratio
X > 1 is present (Sachsenheimer et al. 2012) during the
whole thinning process. But for solutions with increased
solvent viscosity (added PEG), λe can be determined from
exponential filament thinning up to 5 % (8 % PEG). Nev-
ertheless, all experiments yield an identical value for the
elongational relaxation time independent of hi and hf in
agreement with those in the literature (Kim et al. 2010;
Miller et al. 2009). The diameter Dexp,0 where the fila-
ment begins to thin exponentially decreases with increasing
stretching ratio. Therefore, the elasto-capillary number Ec
at which the exponential decrease sets in is not a material
parameter as suggested by Clasen (2010) but also depends
on the choice of hi and hf .
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Fig. 3 Filament diameter as a
function of time for a 1 % PEO
of Mw = 1 · 106 g/mol

dissolved in a 16.7 % PEG
solution with given initial and
final heights
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Transient force ratio and its relation to the elongational
viscosity

Figure 4 shows typical results for a 2 % PEG/PEO and
a 4 % PS solution for the force ratio X as a function of
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Fig. 4 Transient force ratio X as a function of normalized time for a
2 % PEO of Mw = 1 · 106 g/mol dissolved in a 16.7 % PEG solution
and a 4 % PS solution. The gray line illustrated the exponential decay
in the force ratio fitting (15) with X̃ = X∞ to the experimental data

the normalized time t/tf il , where tf il is the filament life-
time. The force ratio decreases exponentially at the early
state of the thinning process, indicating a characteristic ini-
tial relaxation process. The sudden separation of the lower
and upper plates provokes a huge and rapid deformation of
the liquid thread. The diameter of the filament decreases
from the initial diameter D0 = 6 mm to a diameter D1 ≈
1 mm observed right after the upper plate has reached
its final position corresponding to an initial Hencky strain
of ε0 ≈ 3.6. For a typical strike time of ts = 40 ms,
the initial deformation occurs at an average elongation rate
< ε̇0 > = ε0/ts ≈ 90 s−1. This initial step strain results
in an (initial) axial normal stress σzz which relaxes after the
step strain. For PEO solutions with low polymer concentra-
tions c ≤ 2.5 ce, the transient force ratio X(t) levels off to
a final value of X∞ = 1.00 ± 0.04 independent of concen-
tration. For higher PEO concentrations, the force ratio X∞
increases monotonically with polymer concentration and
the exponentially decreasing diameter region is no longer
observed (Arnolds et al. 2010; Sachsenheimer et al. 2012).
A force ratio X = 1 corresponds to a vanishing axial nor-
mal stress σzz and, therefore, to an axial force F only given
by the surface tension � and the diameter D of the liquid
thread.

The PS and CPyCl/NaSal/NaCl solutions show a more
complex behavior. After the initial decrease, the transient
force ratio levels off to a much lower value of Xmin =
0.75 ± 0.05 for PS and CPyCl/NaSal/NaCl independent
of the concentration (except of the 1 % PS solution for
which the force signal is too low and no Xmin could be
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detected). These values agree well with the theoretical
value of XNew = 0.713 for a Newtonian liquid (Papa-
georgiou 1995). A force ratio X < 1 corresponds to a
compressive axial normal stress σzz in the fluid filament
(Sachsenheimer et al. 2012). After passing the Xmin region,
the force ratio starts to increase to a final force ratio of
X∞ = 0.98 ± 0.08 for all PS and CPyCl/NaSal/NaCl solu-
tions investigated here. These force measurements confirm
the occurrence of an early visco-capillary-controlled regime
and a transition to an elasto-capillary-controlled regime
for PS and CPyCl/NaSal/NaCl solutions as suggested by
Entov and Hinch (1997) as well as by Clasen (2010). The
visco-capillary thinning regime occurs due to the low elasto-
capillary numbers of these solutions. However, changing
the solvent viscosity of PEO solutions by adding PEG does
not cause an early Newtonian thinning regime. The viscos-
ity of 16.7 % PEG solution is about seven times higher
than the viscosity of diethyl phthalate but elasto-capillary
numbers Ec0 > 1 are found independent of solvent
viscosity ηsol .

The elongational viscosity ηe is often calculated as
apparent value ηe,app using the σzz = 0 assumption
(corresponding to X = 1) according to Eq. 9. Gener-
ally, the elongation rate ε̇ changes during capillary thin-
ning in CaBER experiments, but it remains constant for
a liquid thread with exponentially decreasing diameter.
Then, the elongation rate is related to the elongational
relaxation time according to ε̇ = 2/ (3λe). The nor-
mal stresses σzz and σrr (if present) also depend on
time. In consequence, the elongational viscosity ηe or
ηe,app are transient values even if the elongation rate ε̇ is
constant.

Figure 5 shows exemplarily the true and apparent elon-
gational viscosity as a function of time t for the 3 %
PEG/PEO and the 4 % PS solution. In the first thinning
period, ηe decreases with time according to the decrease
of the force ratio X(t), whereas ηe,app increases mono-
tonically. As the capillary thinning proceeds further, the
transient elongational viscosity ηe goes through a distinct
minimum with ηe,min and finally increases exponentially
as expected for a Maxwell fluid with a single relaxation
time. This strain hardening is a consequence of the well-
known entropy elasticity of polymer chains. During this last
stage of thinning, ηe,app and ηe are equal as expected for
X = 1. Similar results are found for all solutions inves-
tigated in this study. For the PS and CPyCl/NaSal/NaCl
solutions, the intermediate regime is controlled by visco-
capillary thinning (X = 0.713) as discussed above yielding
an apparent elongational viscosity substantially higher than
the true value.

The differences between true and apparent elongational
viscosities are caused by the axial normal stress σzz in the
filament which can be expressed in terms of the force ratio
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Fig. 5 Elongational viscosity (squares) and apparent elongational vis-
cosity (circle) as a function of time for a 3 % PEO of Mw = 1 ·
106 g/mol dissolved in a 16.7 % PEG solution (top) and a 4 % PS
(bottom) solution

X and the radial normal stress σrr according to the following
(Sachsenheimer et al. 2012):

σzz = 2σrr (1 −X) . (13)
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The ratio of the true elongational viscosity and the apparent
elongational viscosity then reads as follows:

ηe

ηe,app
= σzz − σrr

−σrr
= 2X − 1. (14)

From Eq. 14, it becomes obvious that a force ratio X < 1,
as observed for a Newtonian controlled thinning, results in
an elongational viscosity smaller than the apparent value
and X > 1, as, e.g., observed during the initial period of
thinning or for highly concentrated PEO solutions (Sachsen-
heimer et al. 2012), causes ηe > ηe,app. Both elongational
viscosities (true and apparent) are only equal if the force
ratio is X = 1.

In addition, the uniaxial elongational viscosity of poly-
mer solutions can be obtained from filament stretching
extensional rheometer (FiSER) measurements. In such an
experiment, the liquid under test is also placed between two
parallel plates, but the upper plate is separated continuously
until the filament breaks (Tropea et al. 2007). Generally, two
types of velocity profiles are possible (Kolte et al. 1997):
The upper plate is separated with an exponentially increas-
ing velocity or the plate velocity is controlled, such that the
filament diameter decreases exponentially corresponding to
a constant elongational rate during the whole experiment
(Kolte et al. 1997; Tropea et al. 2007). The transient elonga-
tional viscosity is computed from the tensile force exerted
by the fluid column on the endplate and the filament diam-
eter at the axial midpoint (McKinley et al. 2001). More
details about FiSER are given by Tirtaatmadja and Sridhar
(1993); Spiegelberg et al. (1996); Anna et al. (1999, 2001b);
Orr and Sridhar (1999); McKinley et al. (2001); McKinley
and Sridhar (2002); Rothstein and McKinley (2002a;
2002b); Rothstein (2003), and Tropea et al. (2007).

However, FiSER measurements yield higher values for
the maximum elongational viscosity ηmax

e than CaBER
(Bhardwaj et al. 2007a). Similar results are obtained for
CPyCl/NaSal/NaCl solutions investigated in this study (data
not shown). The observed differences between both tech-
niques may be explained by the simplified CaBER analysis
using the σzz = 0 assumption. But as shown above, X = 1
was found the final period of thinning for WLM solutions.
Therefore, the σzz = 0 assumption is fulfilled and can-
not be the reason for the differences in ηmax

e . It seems
to be more likely that differences in strain history and
failure mechanism affect the material behavior in elon-
gational flow. Indeed, FiSER experiments of the 2.94 %
CPyCl/NaSal/NaCl solution show a very high maximum
force ratio of XFiSER∞ = Dminσmax/4� ≈ 60 and a diame-
ter Dmin ≈ 1 mm at filament rupture, clearly indicating the
difference in the thinning mechanism.

Figure 6 shows the minimum viscosity ratio T rmin =
ηe,min/η0 for the investigated polymer solutions as a func-
tion of polymer concentration c. The viscosity ratio T rmin
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Fig. 6 Minimum viscosity ratio T rmin = ηe,min/ηs as a function of
concentration for PS (squares), PEO of Mw = 1 · 106 g/mol dis-
solved in a 16.7 % PEG solution (circles), aqueous PEO of Mw =
1·106 g/mol (triangles), and CPyCl/NaSal/NaCl (diamonds) solutions

decreases exponentially with increasing polymer concen-
tration c according to T rmin ∝ exp (−0.74 ± 0.02 c/%)

and levels off at a constant value for polymer concentra-
tions c > ce for all solutions including CPyCl/NaSal/NaCl.
For PEO solutions with Mw = 1 · 106 g/mol, T rmin is
between 60 and 70 for low concentrations and levels off to
T rmin = 9.5 ± 0.8. Obviously, the initial step strain results
in a nonlinear change of polymer configuration which does
not relax and capillary thinning does not start from the equi-
librium where Tr = 3 would be expected. Increasing the
solvent viscosity results in a slight increase of T rmin for
high PEO concentrations (T rmin = 13.4 ± 0.8 for PEO
with Mw = 1 · 106 g/mol dissolved in an aqueous solution
of 16.7 % PEG) and in a similar shift of the concentra-
tion at which the limiting value of T rmin is reached. In
contrast, for PS and CPyCl/NaSal/NaCl solutions, Tr levels
off at T rmin = 3, indicating a relaxation of initial stresses
and a pure Newtonian response for high polymer concentra-
tions before the beginning of the elasto-capillary thinning
process. Nevertheless, at low concentrations, T rmin >> 3
is found even though an intermediate Newtonian thinning
regime is observed for these solutions.

However, analyzing the minimum Trouton ratio T rmin

seems to be useful due to two reasons. The determination
of the minimum elongational viscosity ηe,min is very con-
venient, whereas a determination of the maximum elonga-
tional viscosity or maximum Trouton ratio often calculated
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for surfactant solutions (Bhardwaj et al. 2007a, b) includes
large experimental uncertainties. All solutions (including
the CPyCl/NaSal/NaCl surfactant solutions) investigated in
this study have thin to very tiny diameters which are hard to
be determined accurately. The minimum elongational vis-
cosity also indicates a transition in the thinning behavior. In
the initial stage of the experiment, the thinning behavior is
controlled by an initial relaxation of the axial normal stress
(decrease of ηe) followed by a pronounced increase of the
radial normal stress (increasing of ηe) at the final stage of
thinning.

Elongational relaxation time

In addition to the determination of elongational viscosities,
CaBER experiments also allow for measuring the elon-
gational relaxation time λe. Commonly, λe is determined
from the exponential diameter decay of the liquid filament
undergoing capillary thinning according to Eq. 2. Figure 7
shows three independently determined elongational relax-
ation times for the PEO (Mw = 1 · 106 g/mol) and PS
solutions investigated in this study: the elongational relax-
ation time λe determined from the diameter vs. time curve
of a vertically stretched filament, the elongational relax-
ation time λe determined from the diameter vs. time curve
of a horizontally stretched filament, and the force relaxation
time λX calculated from the initial exponential decay of the
transient force ratio in the initial thinning period. Although
the filament diameter does not decrease exponentially in this
regime, the force ratio follows an exponential decrease in
time according to

X (t) = C exp

(
− t

λX

)
+ X̃, (15)

where C is a constant and X̃ is the value of the force ratio
after the initial decay (X̃ ≡ X∞ ≈ 1 for PEO solutions
and X̃ ≡ Xmin ≈ 0.75 for PS and CPyCl/NaSal/NaCl
solutions). A representative result as fit of Eq. 15 to exper-
imental data for 2 % PEO dissolved in the 16.7 % PEG
solution is shown as gray line in Fig. 4. We also analyzed
the influence of the strike time 20 ms < ts < 480 ms on the
force relaxation time as shown in the inset of Fig. 7 (top)
for the aqueous 4 % PEO (Mw = 1 · 106 g/mol) solu-
tion. In the investigated parameter range λX is found to be
independent of the strike time. This indicates that the initial
relaxation of the force ratio X(t) is not influenced by iner-
tia effects as expected since Reynolds numbers defined as
Re = ρvD0/η0, where v is the velocity of the upper plate
during step strain v = (

hf − hi
)
/ts , are less than one. For

the 4 % PEO solution (inset in Fig. 7) with a zero shear
viscosity of η0 = 8.6 Pas, the corresponding Reynolds
numbers are between 0.016 and 0.38 for strike times vary-
ing from 480 and 20 ms. However, considering our standard
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Fig. 7 Elongational relaxation times from CaBER experiments for
aqueous PEO of Mw = 1 · 106 g/mol (top) and PS solutions (bot-
tom). Relaxation time values for PEO solutions in the upright CaBER
experiment are taken from Arnolds et al. (2010). The inset diagram
represents the force ratio relaxation time as a function of the strike time
for a 4 % PEO solution. Lines are guide to the eye

setup with ts = 40 ms, the maximum Reynolds numbers
of Re = 4 are found for solutions where a force relaxation
time could be determined. But even in these cases, inertia
effects may be neglected since the filaments are stabilized
elastically (Sachsenheimer et al. 2012).



Rheol Acta (2014) 53:725–739 735

Nevertheless, too high strike times should not be chosen
because a superposition of stretching and capillary thinning
has to be avoided. Therefore, we propose an appropriate
strike time of ts < 0.1 tf il .

All three elongational relaxation times agree well within
experimental error irrespective of the polymer concentration
as long as X∞ = 1. The impressive agreement between λe
and λX suggests that the first stage of capillary thinning,
where the diameter does not thin exponentially, is controlled
by the same relaxation process as the terminal thinning
regime with its exponential filament decay. The excellent
agreement between all three relaxation times also shows that
gravity has no influence on the elasto-capillary thinning of
viscoelastic fluids demonstrating the equivalence of upright
and tilted CaBER experiments.

Furthermore, the elongational relaxation times increase
monotonically with increasing polymer concentration c.
The force relaxation times λ of PEO solutions with concen-
trations c ≥ 4 % (corresponding to c > 2 ce) show a stronger
increase with concentration c than elongational relaxation
times for concentrations c < 2 ce. However, a determination
of λ was not possible for these solutions due to the absence
of an exponentially decreasing diameter region (Arnolds el
al. 2010). These solutions also exhibit a final force ratio
X > 1 (Sachsenheimer et al. 2012).

Correlation between shear and elongational relaxation time

In Fig. 8, the relaxation time ratio λe/λs is shown as a
function of polymer concentration c. Data for PEO solu-
tions with different molar masses and solvent viscosities as
well as PS solutions at different temperatures are displayed.
In all cases, the relaxation time ratio decreases exponen-
tially with increasing polymer concentration c covering up
to 2 orders of magnitude. PEO solutions with higher PEO
molar mass show lower λe/λs values (at constant polymer
concentration c) and a stronger dependence on polymer con-
centration. Investigations on PEO solutions shows that the
solvent viscosity does not affect the relaxation time ratio
λe/λs . Varying the temperature of the PS solution between
10 and 40◦C corresponds to a viscosity as well as a shear
and elongational relaxation time change but does not affect
the relaxation time ratio. Slight changes in surface ten-
sion or solvent quality upon temperature variation are not
considered to be relevant for the λe/λs ratio.

Obviously, changing the solvent viscosity or the temper-
ature affects the relaxation of dissolved polymer molecules
in the same way for elongational and shear flows. The elon-
gational relaxation time λe, therefore, is a characteristic
parameter of the polymer solution but not equal to the ter-
minal shear relaxation time λs . Comparing λe to a mean
shear relaxation time λ̄s as suggested by Liang and Mack-
ley (1994) according to Eq. 3 requires the knowledge of




Fig. 8 Relaxation time ratio as a function of concentration for differ-
ent polymer solutions with different solvent viscosities and tempera-
tures as shown in the legend of the diagram

the relaxation time spectrum which cannot be determined
unambiguously. However, the PS solutions investigated here
are thermo-rheologically simple so that the viscosity func-
tion η (ω) of all investigated PS solutions (independent of
concentration or temperature) can be plotted as dimension-
less master curve by scaling the viscosity with the zero
shear viscosity η0 and the angular frequency with the ter-
minal shear relaxation time λs . Accordingly, all relaxation
times scales with λs and any average relaxation time like,
e.g., λ̄s , exhibit the same dependence on concentration or
temperature. As a consequence, the ratio of λe and any
average relaxation time should be constant independent of
concentration or temperature. The strong decrease of λe/λs
must therefore be related to a nonlinear material property as
already suggested by Arnolds et al. (2010).

Finally, it is interesting to note that the exponential
decrease of λe/λs with increasing concentration seems to be
a universal feature of entangled polymer solutions. Figure 9
displays the λe/λs values as a function of normalized con-
centration c [η], where [η] is the intrinsic viscosity of the
polymer solution, for solutions of PEO and PS with different
molecular weights, solvent viscosities, and temperatures.
Obviously, all data collapse onto a single master curve when
plotted as a function of c [η] and follow a unique exponential
decay.

For comparison, we have investigated a series of
CPyCl/NaSal/NaCl solutions which represent simple
Maxwell fluids characterized by one relaxation time (Cates
1996; Berret et al. 1993) as shown in the inset of Fig. 10
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where G′ and G′′ data for two CPyCl/NaSal/NaCl solu-
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Maxwell model to the experimental data. The relaxation
time ratio for these simple Maxwell fluids is shown in
Fig. 10. Surprisingly, all solutions show a constant value of
λe/λs = 1.17± 0.05 independent of concentration, indicat-
ing that the elongational behavior of WLM solutions is only
given by linear fluid properties determined in small ampli-
tude oscillatory shear. This result is remarkable because the
relaxation time of a wormlike structure strongly depends on
the mean length of the micelles. Finding λe ≈ λs suggests
that the mean length does not change during the elonga-
tional deformation as discussed theoretically (Vasquez et al.
2007; Cromer et al. 2009; Germann et al. 2013). A change
in micellar length due to a deformation-induced increase of
the breakage rate would dramatically shorten the relaxation
time and λe/λs << 1 would be expected.

On the other hand, λe ≈ λs implies that nonlinear effects
are not relevant in CaBER experiments of these surfac-
tant solutions. Identifying the shear relaxation time λs as
characteristic relaxation time of the material and consider-
ing ε̇ = 2/ (3λe), the relaxation time ratio λe/λs might
be interpreted as an inverse Weissenberg number Wi−1 =
(ε̇λs)

−1 = 3λe/ (2λs). For CPyCl/NaSal/NaCl solutions,
Wi = 0.6 is independent of surfactant concentration indicat-
ing a linear viscoelastic response. Unfortunately, the model
of Arnolds et al. (2010) taking into account the strong defor-
mation during capillary thinning cannot be applied here.
The damping function cannot be determined from inde-
pendent steady shear experiments since shear banding is
prominent in these flows (Bhardwaj et al. 2007a, b).

Conclusion

We have investigated capillary thinning of entangled poly-
mer solutions focusing on weakly elastic systems showing
exponential diameter decay.

The tilted CaBER method has been used to determine
the force ratio X and the true elongational viscosity ηe. The
force ratio decays exponentially and levels off at X∞ = 1
for the PEO solutions with high elasto-capillary numbers
Ec0. However, for the PS and CPyCl/NaSal/NaCl solutions
with Ec0 ≤ 1, an intermediate Newtonian thinning regime
was confirmed based on the measured force ratio X = 0.713
as already suggested by Clasen (2010). The initial stress
decay after step strain filament formation is characterized
by a relaxation time λX equal to the relaxation time λe
determined from the terminal exponential thinning region.
Obviously, the corresponding initial decrease of the elon-
gational viscosity ηe is controlled by the same molecular
processes like the increase of ηe (strain hardening) in the
final regime of thinning. Since ηe goes through a distinct
minimum during filament thinning, a characteristic min-
imum Trouton ratio T rmin can be determined accurately.
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This Trouton ratio decreases exponentially with increas-
ing polymer concentration for all investigated solutions and
levels off at T rmin = 10 for all PEO solutions irrespec-
tive of solvent viscosity. For the PS and CPyCl/NaSal/NaCl
solutions characterized by low elasto-capillary numbers,
T rmin = 3 is found.

The relaxation time ratios λe/λs decreases exponentially
with increasing polymer concentration and the data for all
investigates PEO and PS solutions collapse onto a single
master curve irrespective of polymer molecular weight, sol-
vent viscosity, or temperature when plotted versus reduced
concentration c [η]. This decrease is due to the strong non-
linear deformation in CaBER experiments as suggested ear-
lier (Arnolds et al. 2010) but not due to a different weighting
of relaxation times in the different flow kinematics.

On the other hand, λe ≈ λs is found for all investigated
CPyCl/NaSal/NaCl solutions, clearly indicating that nonlin-
ear effects are not relevant in capillary thinning of these
“living” polymer systems.
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