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1   Rheology of disperse systems 

N. Willenbacher and K. Georgieva 

1.1   Introduction 
Rheology of disperse systems is an extremely important processing parameter. Being able to 

characterize and manipulate the flow behavior of dispersions one can ensure their optimal 

performance. Automotive coatings, for example, should exhibit a distinct low-shear viscosity 

necessary to provide good leveling but to avoid sagging at the same time. Then a strong degree 

of shear thinning is needed in order to guarantee good pump- and sprayability. The rheological 

properties of dispersions, especially at high solid content, are complex and strongly dependent on 

the applied forces. Adding particles does not simply increase the viscosity of the liquid as a 

result of the hydrodynamic disturbance of the flow; it also can be a reason for deviation from the 

Newtonian behavior including shear rate dependent viscosity, elasticity and time dependent 

rheological behavior. Colloidal dispersions at moderate volume fraction normally flow like 

shear-thinning, low viscous liquids. At high concentrations dispersions often behave as solids 

and require a finite stress to deform the structural network and then start to flow. The 

microstructure deformed under stress usually can not recover immediately from large strains 

since the colloidal interactions governing the microstructure have a short range and decrease 

with increasing the interparticle separation. Depending whether the colloidal interactions are 

attractive or repulsive the particles can form different structures which determine the rheological 

behavior of the material. In the case of attractive particle interactions loose flocs with fractal 

structure can be formed immobilizing part of the continuous phase thus leading to larger 

effective particle volume fraction and correspondingly to increase of viscosity. Above a critical 

volume fraction a sample-spanning network forms, which results in a highly elastic, gel-like 

behavior and an apparent yield stress. Shear-induced breakup and recovery of floc structure leads 

to thixotropic behavior. Electrostatic or steric repulsion between particles define an excluded 

volume which is not accessible by another particle leading to crystalline or gel-like state at 

particle concentrations lower than the maximum packing fraction. 

Characterization of the microstructure and flow properties of dispersions is essential for the 

understanding and controlling their rheological behavior. In this chapter we first introduce 

methods and techniques for standard rheological tests and then characterize the rheology of hard 
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spheres, repulsive and attractive particles. The effect of particle size distribution on the rheology 

of highly concentrated dispersions and the shear thickening phenomenon will be discussed with 

respect to the influence of colloidal interactions on these phenomena. Finally, typical features of 

emulsion rheology and the flow behavior of more complex fluids based on emulsions or 

suspensions will be dicussed. 

1.2   Basics of Rheology 
According to its definition, Rheology is the science of the deformation and flow of mater. 

The rheological behavior of materials can be regarded as being between two extremes: 

Newtonian viscous fluids, typically low-molecular liquids, and Hookean elastic solids, like for 

example rubber. However, most of the real materials exhibit mechanical behavior with both 

viscous and elastic characteristics. Such materials are termed viscoelastic. Before considering the 

more complex viscoelastic behavior, let us first elucidate the flow properties of ideally viscous 

and ideally elastic materials. 

Isaac Newton first introduced the notion of viscosity as a constant of proportionality between 

the force per unit area (shear stress) required to produce a steady simple shear flow and the 

resulting velocity gradient in the direction perpendicular to the flow direction (shear rate): 

[eq_001] 

Equation 1.1  

γησ =  

 

where σ is the shear stress, η the viscosity and the γ  is the shear rate. A fluid that obeys this 

linear relation is called Newtonian, which means that viscosity is independent of shear rate for 

the shear rates applied. Glycerine, water and some mineral oils are typical examples for 

Newtonian liquids. The Newtonian behavior is also characterized by constant viscosity with 

respect to the time of shearing and an immediate relaxation of the shear stress after the shearing 

is stopped. Furthermore the viscosities measured in different types of deformation are always 

proportional to one another 

Materials such as dispersions, emulsions and polymer solutions often depart from the 

Newtonian behavior and the viscosity is found to decrease or increase with increasing shear rate, 

referring to shear thinning and shear thickening respectively. The general shape of the curves 
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representing the variation of viscosity as a function of shear rate and the corresponding graphs of 

shear stress as a function of shear rate are shown in Figure 1.1a–b  

 

[Fig_001] 

Figure 1.1a–b Typical flow curves for Newtonian, shear-thinning and shear thickening fluids 

a viscosity as a function of shear arte b shear stress as a function of shear rate 

Materials with a yield stress behave as solids at rest and start to flow only when the applied 

external force overcome the internal structural forces. Concentrated dispersions with attractive 

interactions, emulsions and foams, clay suspensions, automotive coatings and ketchup are typical 

examples for materials with yield point. A characteristic flow curve showing the yield stress is 

schematically displayed in Fig. Note that there are various methods for yield point determination 

and the measured value may differ depending on the method and instrument used. 

 

[Fig_002] 

Figure 1.2 Flow curve of a material with a yield stress σy 

The flow history of a material also should be taken into account when making predictions of 

the flow behavior. Two important phenomena related to the time-dependent flow behavior are 

the thixotropy and rheopexy. For sample showing thixotropic behavior the viscosity gradually 

decreases with time under constant shear rate followed by a gradual structural regeneration when 

the stress is removed. The thixotropic behavior can be identified measuring the shear stress as a 
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function of increasing and decreasing shear rate. Fig shows a hysteresis typical for thixotropic 

dispersions. Materials exhibiting a rheopectic behavior show an increase of the viscosity with 

time at constant shear rate. Fluids showing rheopectic behavior are much less common than 

thixotropic materials. 

 
[Fig_003] 

Figure 1.3 Flow curve of a thixotropic material 

So far we have considered the flow behavior of viscous fluids in terms of the Newton’s law 

and non-linear change of viscosity with applied stress which can occur either instantaneously or 

over a long period of time. At the other extreme is the ideal elastic behavior of solids which can 

be described by the Hooke’s law of elasticity: 

[eq_002] 

Equation 1.2  

γσ G=  

 

where γ is the deformation (also termed strain) and G is the shear modulus which reveals 

information about the rigidity of a material. The shear modulus of an idealelastic solid is 

independent of the shear stress and duration of the shear load. As soon as the deformation is 

reached, no further motion occurs. In contrast, viscoelastic materials deform at constant stress 

partially simultaneously, partially continuously over time. Thus, the time dependent stress 

relaxation is used to measure the visoelasticity of materials. When the stress relaxation is 

proportional to the strain we are talking about the so called linear viscoelastic regime. Above a 

critical strain the microstructure of the sample breakup and the shear modulus becomes strain 

dependent. This is so called nonlinear viscoelastic regime. 
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Dynamic test or small amplitude oscillatory shear (SAOS) test is the most widely used 

rheological measurement to investigate the linear viscoelastic behavior of a fluid, since it is 

sensitive to the microstructure, easy to use and has a sound mathematical background. When 

oscillatory shear strain is applied to a viscoelastic material it will be deformed sinusoidally by a 

deformation γ(t) with amplitude γ0 and angular frequency ω: 

[eq_003] 

Equation 1.3  

)sin()( 0 tt ωγγ =  

 

where t denotes the time. Hence the shear rate can be expressed as the time derivative of the 

shear strain as follows: 

[eq_004] 

Equation 1.4  

)cos()()( 0 t
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The oscillating system responds with sinusoidal course of shear stress σ(t) with amplitude σ0 and 

angular frequency ω, but phase shifted by an angle δ compared to the presented sine curve: 

[eq_005] 

Equation 1.5  

)sin()( 0 δωσσ += tt  

 

Depending on material behavior, the phase shift angle δ occurs between 0° and 90°. For ideal 

elastic materials the phase shift disappear, i.e. δ = 0° while for ideal viscous liquids δ = 90°. In 

oscillatory shear experiment the shear modulus is written in complex form: 

[eq_006] 

Equation 1.6  
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The complex shear modulus G* consists of two components: the storage modulus G' and loss 

modulus G'': 

[eq_007] 

Equation 1.7  

)()()(* ωωω GiGG ′′+′=  

 

The G'-value is a measure of the energy stored by the material during the cycle of deformation 

and represents the elastic behavior of the material, while G'' is measure of the energy dissipated 

or lost as heat during the shear process and represents the viscous behavior of a test material.  

The G'- and G'' can be expressed as sine and cosine function of the phase shift angle δ as 

follows: 

[eq_008] 

Equation 1.8  
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[eq_009] 

Equation 1.9  
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Hence the tangent of the phase shift δ can be defined as the ratio of loss and storage modulus: 

[eq_010] 

Equation 1.10  
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Analogous to the complex shear modulus we can express a complex viscosity η*, defined as 

follows: 

[eq_011] 

Equation 1.11  
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where η' represents the viscous behavior and η'' the elastic part of the complex viscosity. The 

complex viscosity may be more convenient dealing with liquids but we can readily convert to the 

dynamic moduli: 

[eq_012] 

Equation 1.12  
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 [eq_013] 

Equation 1.13  
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The viscoelastic properties of a fluid can be characterized by oscillatory measurements, 

performing amplitude- and frequency sweep. The oscillatory test of an unknown sample should 

be started with an amplitude sweep, i.e. variation of the amplitude at constant frequency. Up to a 

limiting strain γy the structure of the tested fluid remains stable and G′ as well as G′′ is 

independent of the strain amplitude. Above the limiting amplitude of deformation the structure 

of the sample has been changed and G' as well as G'' decrease with increasing deformation. The 
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linear viscoelastic range may depend on the angular frequency ω. At higher frequencies many 

materials show higher rigidity and more brittle behavior, therefore lower limiting amplitude γy. 

Frequency sweeps are used to examine the time dependent shear behavior. For this purpose 

the frequency is varied using constant amplitude within the linear viscoelastic range. At 

appropriately high angular frequency ω, i.e. short term behavior, the samples show an increased 

rigidity and hence G' > G''. At lower frequencies (long term behavior) the microstructure is more 

flexible and the viscous behavior dominates, correspondingly G'' > G'. 

1.3   Experimental Methods of Rheology 
Experimental methods to determine the flow properties of fluids are termed rheometers, while 

measuring systems used for viscosity measurements are specified as viscometer. The rheometers 

can be categorized by the flow type in which materials properties are investigated: simple shear 

and extensional flow. The shear rheometers can be divided into rotational, in which the shear is 

generated between fixed and moving solid surface, and pressure driven like the capillary 

rheometer, in which the shear is generated by a pressure difference over the channel through 

which the material flows. Extensional rheometers are relatively less developed than shear 

rheometers because of the difficulties to generate homogeneous extensional flow especially for 

liquids with low viscosity. Many different experimental techniques have been developed to 

characterize the eleongational properties of fluids and predict their processing and application 

behaviour. The most successful commercially available instrument is the capillary breakup 

extensional rheometer (CaBER). The thinning and breakup of fluid filament controlled by the 

balance between surface tension and viscoelastic force provides valuable information about 

materials rheological properties in an elongational flow. However, further development and 

better understanding of the CaBER experiments is necessary 

1.3.1   Rotational Rheometry 
In rotational instruments the rheological properties of materials can be characterized in a steady 

simple shear flow with homogeneous regime of deformation. Basically there are two different 

regimes of deformation: imposition of constant rotational speed or constant torque, 

corresponding to controlled shear rate and controlled shear stress, respectively. Moreover, many 

rotational rheometers are capable to impose harmonic oscillations for measuring the viscoelastic 

material properties. Three types of measuring systems are commonly used in the modern 
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rotational rheometry, namely concentric cylinder, cone-and-plate and parallel-plate. Typically 

shear rates that can be measured with rotational rheometers are in the range 10-3 to103 s-1 

[Fig_004] 

Figure 1.4a–c Schematic representation of a concentric cylinder b parallel-plate and c cone-and-

plate measuring system 

1.3.1.1   Concentric Cylinder Measuring System 

As shown in Figure 1.4a, a cylinder measuring system consists of outer cylinder (cup) and 

inner cylinder (bob). There are two modes of operation depending on that if the cup or the bob is 

rotating. The Searle method corresponds to a rotating bob and stationary cup, while in the 

Couette mode the cup is set in motion and the bob is fixed. The gap between the two concentric 

cylinders should be small enough so that the sample confined in the gap experiences a constant 

shear rate. This requirement is fulfilled and the gap is classified as “narrow” when the ratio of 

the outer to the inner cylinder radius is greater than 0.97. On the other side, the narrow gap 

concentric cylinder measuring systems are associated with difficulties when investigating 

suspensions of relatively large particles. In this case, wider gap viscometers are preferable, but 

the inaccuracy involved due shear rate changes across the gap should be taken into account. 

Consider the flow of a sample enclosed in the gap between the cup with radius Ra and the 

bob with radius Ri. When the bob is rotating at angular velocity ω the shear rate is given by: 

[eq_014] 

Equation 1.14  
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If the torque measured on the bob is Md, the shear stress σ in the sample is given by: 

[eq_015] 

Equation 1.15  
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where L is the effective immersed length of the bob. Having the shear rate γ  and shear stress σ, 

sample viscosity η can be calculated according to the Newton’s postulate (Equation 1.1). For 

these calculations we ignore any end effects, which are actually likely to occur as a result of the 

different shearing conditions in the liquid covering the ends of the cylinders. In order to 

minimize the end effect the ratio of the length L to the gap between cylinders is maintained 

greater than 100 and the shape of the bottom of the bob is designed as a cone with an angle α, 

which is chosen so that the shear rate in the bottom match the that in the narrow gap between the 

concentric cylinders. 

The concentric cylinder measuring system is especially suitable for low-viscous liquids, since 

they cannot flow off the shear gap. Other advantages of this geometry are that annular gap 

remains fill even in the case of samples showing the Weissenber effect and the sample 

evaporation can be easily prevented by a cover or a solvent trap. Furthermore, the temperature of 

the sample can be easily controlled due to the large contact area. 

1.3.1.2   Parallel-Plate Measuring system 

The parallel plate geometry is shown in Figure 1.4b. The sample confined in the gap H 

between the two coaxial parallel plates is sheared by the rotation of one of the plates at angular 

velocity ω. Thereby the circumferential velocity v depends on the distance between the plates h 

and distance r from the rotational axis: 

[eq_016] 

Equation 1.16  
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and thus: 
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[eq_017] 

Equation 1.17  

H
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The shear rate γ  at a constant ω is not constant within the entire shear gap. It increases from 

zero at the center (r = 0) to maximum at the rim of the plate (r = Rp). Typically the calculations 

and analysis of rheological results in parallel-plate measuring systems are related to the 

maximum shear rate value at the rim of the plate. The shear rate can be varied in a wide range by 

changing the gap height H and the angular velocity ω. 

The shear stress σ is a function of the shear rateγ , which is not constant within the gap. Thus 

to relate the shear stress to the total torque an expression for the )(γσ  dependence is necessary. 

In the case of Newtonian liquid the shear stress depends linearly on the shear rate and can be 

expressed as follows: 

[eq_018] 

Equation 1.18  
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This expression is called apparent shear stress. Geisekus and Langer 1

The parallel-plate measuring system makes possible measurements of suspensions with 

relative large particles by using large gap heights. On the other hand, operating at small gaps 

viscosity can obtained at relatively high shear rates. Small gaps also allow for reduction of errors 

due to edge effects and secondary flows. 

(1977) developed a simple 

approximate single point method to correct the shear rate data, based on the idea that the true and 

apparent shear stress must equal at some position near the wall. It was found that this occurs at 

the position where r/Rp = 0.76 and holds for a wide range of liquids. 

1.3.1.3   Cone-and-Plate Measuring System 

A cone-and-plate geometry is shown schematically in Figure 1.4c. The sample is contained 

between a rotating relative flat cone and a stationary plate. Note that the apex of the cone is cut 
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off to avoid friction between the rotating cone and the lower plate. The gap angle ϕ is usually 

between 0.3° and 6° and the cone and plate radius Rp is between 10 to 30 mm. The gap h is 

increasing with the distance r from the rotation axis and reaches it maximum value at the edge of 

the cone: 

[eq_019] 

Equation 1.19  

ϕtan)( rrh =  

 

The circumferential velocity v is also increasing with increasing the distance r: 

[eq_020] 

Equation 1.20  
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Hence the shear rate is constant within the entire gap and does not depend on the radius r: 

[eq_021] 

Equation 1.21  
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The shear stress measured by the torque Md on the cone is given by: 

[eq_022] 

Equation 1.22  
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A great advantage of the cone-and-plate geometry is that the shear rate remains constant und 

thus provides homogenous shear conditions in the entire shear gap. Limited maximum particle 
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size of the investigated sample, difficulties with avoiding solvent evaporation and temperature 

gradients in the sample are typical disadvantages of the cone-and-plate measuring system 

1.3.2   Capillary Rheometer 
A schematic diagram of a piston driven capillary rheometer is show in Fig. A piston drives 

the sample to flow at constant flow rate from a reservoir through a straight capillary tube of 

radius R and length L. The measured pressure drop (∆p) and flow rate (Q) over the capillary are 

used to evaluate the shear stress, shear rate and correspondingly viscosity of the sample. 

 

[Fig_005] 

Figure 1.5 Schematic representation of a controlled flow rate capillary rheometer 

Pressure driven flows through a capillary have maximum velocity at the center and maximum 

shear rate at the wall of the capillary, consequently the deformation is essentially 

inhomogeneous. Assuming Newtonian liquid and fully developed, incompressible, laminar, 

steady flow, the apparent wall shear stress σa is related to the pressure drop ∆p by: 

[eq_023] 

Equation 1.23  
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and the apparent or Newtonian shear rate at the wall can be calculated on the basis of measured 

flow rate according to: 

[eq_024] 

Equation 1.24  
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Therefore we can evaluate the viscosity in terms of an apparent viscosity based on the Newton’s 

postulate (Equation 1.1). 

To get the true shear rate in the case of non-Newtonian fluids the Weissenberg-Rabinowitch 

correction 2

1

 for non parabolic velocity profile should be taken into account. A more simple 

method to determine the true shear rate has been developed by Giesekus and Langer  as well as 

Schümmer3

γ

. Their single point method is based on the idea that the true and apparent shear rate 

must be equivalent at a certain radial position near the wall and thus the true shear rate  is 

given simply by: 

[eq_025] 

Equation 1.25  

aγγ  83.0=  

 

Note that this approximation does no differ significantly from the Weissenberg-Rabinowitsch 

correction. 

Other possible sources of error in the capillary experiment are entrance effects, slippage at 

the capillary wall and viscous heating effects. The entrance effect is associated with not fully 

developed flow at the capillary entrance which can be minimized using long capillary dies with 

ratio L/R ≥ 602. Furthermore, the pressure drop ∆p is difficult to measure directly in the capillary 

therefore it is usually detected by a transducer mounted above the entrance of the capillary. 

Hence the measured pressure includes not only the pressure loss due to the laminar flow in the 

die but also the entrance pressure loss due to the convergence of the flow at the capillary 

entrance. Buggley4

For highly concentrated suspensions wall slip effects, due to shear induced particle migration 

and specific particle-wall interactions has to be considered. It is possible to correct the apparent 

wall shear rate according to the procedure developed by Mooney 

 proposed a correction that accounts for the additional pressure loss at the 

entrance but in many practical applications it is sufficient to use capillary dies with L/R ratio 

large enough. 

5 comparing flow curves 

determined with dies of different radii but similar L/R. 
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The major advantage of the capillary rheometer is that the flow properties of fluids can be 

characterized under high shear conditions (up to 106 s-1) and process relevant temperatures (up to 

400°C). Another advantage is that the capillary flow is closed and has no free surface so that 

edge effects, solvent evaporation and other problems that trouble the rotational rheometers can 

be avoided. 

1.4   Rheology of Suspensions 
The flow behavior of colloidal dispersions is controlled by the balance between 

hydrodynamic and thermodynamic interactions as well as Brownian particle motion. 

Thermodynamic interactions mainly include electrostatic and steric repulsion and van der Waals 

and depletion attraction. The relative importance of individual forces can be assessed on the 

basis of dimensionless groups which can be used to scale rheological experiments. In this section 

we first consider dispersions of Brownian hard sphere particles and elucidate the effect of 

particle volume fraction, size and shape of particles on dispersion rheology. Then, we take into 

account the effect of repulsion and attractive interactions on the microstructure of suspensions 

and its corresponding rheological response. Special attention will be paid to the rheological 

behavior of concentrated colloidal dispersions. 

1.4.1   Hard spheres 
Hard-sphere dispersions are idealized model systems where no particle–particle interactions 

are present unless these particles come into contact. In that sense, they represent the first step 

from ideal gases towards real fluids. Even such simple systems as these can show complex 

rheological behavior. The parameters controlling dispersion rheology will be discussed below.  

1.4.1.1   Viscosity of suspensions of spheres in Newtonian media 

Figure 1.6 demonstrates the general features of the shear stress dependence of suspension 

viscosity at different volume fractions, using the example of aqueous dispersions of 250 nm 

poly(styrene-ethylacrylate) (St/EA) particles6,. It can be seen that viscosity increases with 

particle volume fraction φ and beyond about 30 % it becomes susceptible to shear stress. This 

can be understood considering the rest and flow induced microstructure of concentrated 

suspension. The shear rate at which the shear thinning behavior begins, depends on the balance 

between Brownian and hydrodynamic forces. Hence the Peclet-number Pe is a useful 

dimensionless quantity to expresses the relative importance of these two contributions: 
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[eq_026] 

Equation 1.26  
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where a is the particle size, kBT is the thermal energy and D0 is the diffusion coefficient. 

The Peclet number is often called dimensionless shear rate, equivalently the dimensionless shear 

stress σr can be expressed as follows: 

[eq_027] 

Equation 1.27  
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[Fig_006] 

Figure 1.6 Viscosity as a function of shear stress σ for aqueous dispersions of 250 nm 

poly(styrene-ethylacrylate) at different particle volume fractions in the range φ = 0 – 0.5, as 

reported by Laun6 

At low-shear rates the Brownian motion dominates (Pe < 1) and the rest-state structure 

remains undisturbed resulting in Newtonian behaviour of the concentrated dispersion. Thus the 

viscosity in this low-shear Newtonian regime equals the zero-shear viscosity η0. Increasing the 

shear rate or correspondingly shear stress above a critical magnitude (Pe>1) the imposed velocity 

gradient induces an orientation of the particles resulting in gradually decreasing viscosity with 

Shear stress σ (Pa) 
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increasing shear rate. This is so called shear thinning regime. When the maximum amount of 

shear ordering is reached viscosity attains its minimum value η∞ and becomes again independent 

of the shear rate (or shear stress). This region of the flow curve corresponds to the second 

Newtonian plateau. Further increase of the shear rate can induce viscosity increase, i.e. shear 

thickening behaviour, especially with concentrated suspensions. 

An important clue to the understanding of the non-Newtonian behaviour of suspensions is the 

effect of particle concentration on suspension viscosity. Particles dispersed in a flowing liquid 

disturb the flow field giving rise to extra energy dissipation. The classical model of Einstein7,8

[eq_028] 

for 

infinitely dilute, non-interacting hard spheres showed that single particles increase the viscosity 

of the dispersion medium as a linear function of the volume fraction φ, according to the equation: 

Equation 1.28  
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where η is the suspension viscosity, ηs is the viscosity of the suspension medium and ηr is the 

relative viscosity. The Einstein equation applies to φ < 0.01, assuring that the flow around a 

particle does not influence the velocity field of any other particle. At higher particle 

concentration the hydrodynamic interactions between particles become important and higher-

order terms in φ have to be considered. The effect of two-sphere hydrodynamic interactions on 

the suspension viscosity was calculated by Batchelor9

[eq_029] 

: 

Equation 1.29  
22.65.21 φφη ++=r  

 

This equation is validated to φ < 0.1. For higher particle concentrations multi-particle 

interactions become imperative and it is difficult to analyze theoretically. Numerous of 

phenomenological equations have been proposed to correlate viscosity of concentrated 

dispersions to the particle volume fraction. Krieger and Dougherty10 proposed a semi-empirical 

equation for the concentration dependence of the viscosity: 
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[eq_030] 

Equation 1.30  
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where φmax is the maximum packing fraction or the volume fraction at which the zero shear 

viscosity diverges. This equation reduces to the Einstein relation (Equation 1.28 ) at low particle 

concentration. Approaching the maximum volume fraction φmax the particle packing density is 

such that the dispersion flow is impossible and ηr → ∞. Quemada11

[eq_031] 

 suggested another 

phenomenological model to predict the ηr(φ) dependence: 

Equation 1.31  
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The volume fraction dependence of relative viscosity, according to the models described above 

is shown in Figure 1.7 

The absolute value for the maximum packing fraction φmax is determined by the packing 

geometry which depends on the particle shape and particle size distribution but not on particle 

size. The volume fraction at maximum packing has been calculated by theoretical models and 

different φmax values have been found depending on the type of packing. The φmax value for hard 

spheres is often taken as 0.6412, which is the value associated with random close packing. 

However, experiments of hard sphere dispersions have shown that zero-shear viscosity diverges 

at the volume fraction of the colloidal glass transition φg
13,14

. Colloidal glass transition is 

associated with the glass transition of ordinary glasses which occurs at a certain temperature 

bellow which the molecular mobility vanishes. Similar phenomenon is observed in colloidal 

dispersions. Above a critical particle concentration particle diffusion is restricted to small 

“cages” formed by the nearest neighbours, correspondingly the long-time self-diffusion 

coefficient decreases to zero and the viscosity diverges according to the generalized Stokes-

Einstein relation: 
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[eq_032] 

Equation 1.32  
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The colloidal glass transition volume fraction φg of monodispersed hard sphere suspension is 

found to be 0.5815,16.  

 

[Fig_007] 

Figure 1.7  Schematic reprezantation of the volume fraction dependence of relative viscosity ηr 

according to the Einstein -, Batchelor -, Krieger-Dougherty - and Quemada model 

It should be mentioned, that the Krieger-Dougherty relation describes rather well the volume 

fraction dependence of the limiting high-shear viscosity17

The normalized zero-shear viscosity as well as the limiting high-shear viscosity of hard 

sphere dispersions do not depend on the particle size and solely change with particle volume 

fraction. On the other hand, the particle size influences the shear viscosity in the shear-thinning 

region. This is due to the enhanced contribution of hydrodynamic interactions to the viscous 

dissipation, which increases with decreasing particle size because of the larger particle surface 

area and smaller interparticle separation at constant volume fraction. Since the shear thinning 

region occurs around a characteristic Peclet-number Pe ≈1, variation of particle size results in a 

 but the maximum packing fraction φmax 

have different values at low and high shear rates. An increase of the shear rate causes particle to 

align in the flow direction and determines more efficient packing than the random close packed 

structure at rest. 
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shift of the viscosity/shear rate curve on the γ -axis with particle radius squared. Hence a plot of 

ηr as a function of Peclet number or the dimensionless shear stress σr should superimpose for 

hard sphere colloids of different particle size at given φ. This is illustrated in Fig (Figure 1.8 ) 

using the example of poly(methylmethacrylate) spheres of different size, dispersed in silicone 

oil18. 

 

[Fig_008] 

Figure 1.8 Relative viscosity ηr as a function of dimensionless shear stress σr for sterically 

stabilized poly(methylmethacrylate) particles of different size: 85, 141, 204 and 310 nm 

dispersed in silicon oil18 

1.4.1.2   Non-spherical particles 

Particles can deviate from the spherical form by either being axisymmetric or by having 

irregular shape. Typically particles are approximated by prolate or oblate spheroids (see Figure 

1.9 ) with a specified axis ratio rp: 

[eq_033] 

Equation 1.33  

a
brp =  

 

where b corresponds to the length of the particle along its axis of symmetry and a to its length 

perpendicular to this axis. Some examples of spheroids are shown in Figure 1.9. Rheology of 

suspensions of axisymmetric particles is greatly influenced by particle orientation with respect to 

the flow. Orientation of the spheroids in flowing suspensions is governed by the balance between 

hydrodynamic forces which tend to align particle with flow and the Brownian motion which tend 
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to randomize the orientation. The relative importance of each is given by a rotational Peclet 

number Perot: 

[eq_034] 

Equation 1.34  

γτ rotrotPe =  

 

For disk-like particles with radius a, the rotational relaxation time τrot is: 

[eq_035] 

Equation 1.35  
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and for rod-like particles with length 2b such that rp>>1: 

[eq_036] 

Equation 1.36  
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Consequently, at low shear rates for small particles and low fluid viscosity Perot→0 and the 

randomizing effect of Brownian motion dominates. For Perot > 1 the hydrodynamic forces 

become enough strong to align the particles with the flow and the suspension show a 

considerable shear thinning behavior. 

  

[Fig_009] 
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Figure 1.9 Prolate or oblate shaped particles and correspondent examples of typical particles 

(taken from Macosko “Rheology Principles, Measurements, and Applications”2) 

Figure 1.10a–b shows numerical results of intrinsic viscosity [η] as a function of Perot for 

dilute suspensions of disk- and rod-like particles at different aspect ratios19

[eq_037] 

. Note that the 

intrinsic viscosity [η] for suspensions is a dimensionless quantity defined as: 

Equation 1.37  
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It can be seen from Figure 1.10a–b that the zero-shear intrinsic viscosity increases with 

increasing the aspect ratio rp, which is due to the effective enlargement of the volume 

inaccessible for other particles. Elongated particles in highly diluted suspensions can rotate 

freely about its balance point and thus disturb the flow as a sphere with diameter corresponding 

to the long dimension of a spheroid. 

  

[Fig_010] 

Figure 1.10a–b Intrinsic viscosity [η] as a function of rotational Peclet number Perot, calculated 

for diluted suspensions of a disc- and b rod-like particles of various aspect ratios19  

Particle asymmetry also has a strong effect on the maximum packing fraction and thus on the 

concentration dependence of viscosity. Since the effective volume of elongated particles increase 

strongly with increasing the aspect ratio, particle-particle interactions should be expected at 

lower volume fraction than for sphere suspension with the same phase volume. Although 

axisymmetric particles could be packed more closely than spheres, the divergence of the zero 
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shear viscosity occurs at lower volume fraction and decrease with increasing the aspect ratio [Fig 

from Giesekus 1983 and Clarke 1967,]. 

1.4.2   Influence of Colloidal Interactions on Rheology 

1.4.2.1   Repulsive Particles 

So far we considered suspensions of hard spheres for which the colloidal interactions did not 

play a role. In practice, dispersions are stabilized by repulsive surface forces in order to prevent 

aggregation. Colloidal interactions like electrostatic or steric repulsion keep particles far enough 

apart that they can not be attracted by the short-range van der Waals attraction force. Increasing 

the range of repulsion forces the effective particle radius aeff increases and hence the excluded 

volume which is inaccessible to other particles. The effective volume fraction of the dispersion 

φeff can be expressed as follows: 

[eq_038] 

Equation 1.38  
3
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eff φφ  

 

Many rheological features are analogous to those of hard sphere dispersions and can be 

quantitatively described by mapping the real system onto a hard sphere system with φ = φeff. The 

effective increase of the volume of charged particles causes an increase of the zero-shear 

viscosity as well as formation of microcrystalline phases at lower particle volume fractions than 

in the case of hard spheres. 

The DLVO-theory provides a good description for the interactions among electrostatically 

stabilized colloidal particles (see chapter 2 in volume 1 of “Product Design and Enginiring”20). 

The strength of the repulsion is given by the surface charge or surface potential and the range of 

interaction by the so-called Debye length κ-1, which is inversely proportional to the square-root 

of the ion concentration in the liquid phase. Since the effective volume fraction φeff increases 

with increasing Debye length κ-1, the viscosity of charge-stabilized dispersions strongly depends 

on particle surface charge and ionic strength of the dispersion medium and diverges at lower 

volume fraction than predicted for hard spheres. Horn et al. measured the concentration 

dependence of the zero-shear viscosity for monodispersed charged polystyrene latices (PS) at 
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range of ionic strengths and particle sizes21 1.11. Figure a shows that the relative zero-shear 

viscosity η0,r =η0/ηs diverges at volume fraction φmax,exp well below the one typical for hard 

spheres and this experimental maximum volume fraction φmax,exp decreases with decreasing the 

ionic strength of the system. Particle size is also an important parameter which influences φeff. As 

evident from Equation 1.38, decreasing the particle radius a, at a constant volume fraction φ and 

constant ionic strength, corresponds to an increase of φeff and thus phase transition at lower 

particle concentration. It has been observed experimentally21 that, for smaller particles, the zero-

shear viscosity diverges at lower particle volume fraction φmax,exp, keeping all other conditions 

the same. The effect of particle size and ionic strength on the volume fraction dependence of 

dispersion viscosity can be reduced to a universal master curve by rescaling the volume fraction 

by φ/φmax, exp (Figure 1.11b ). Furthermore, the Quemada (Equation 1.31) and Krieger-Dougherty 

(Equation 1.30) equations developed for hard sphere dispersions provide a good description of 

the low shear viscosity data for the electrostatically interacting systems, as can be seen in Figure 

1.11b. 
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[Fig_011] 

Figure 1.11a–b  a Relative zero-shear viscosity η0,r versus particle volume fraction φ for 

monodisperse polystyrene particles (PS200) of 200 nm in diameter dispersed in water at different 

potassium chloride concentration [KCl] b  Master curve for all the data including the polystyrene 

dispersions at different salt concentration and particle size: 120, 200, 310 nm 21 

Electrostatic interactions have a strong impact on the microstructure or phase behaviour of 

colloidal dispersions and hence on their flow properties. Figure 1.12 demonstrates the relative 
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viscosity as a function of shear rate at various concentrations of electrostatically stabilized 

polystyrene/acrylate dispersion. It can be seen that at low volume fractions the dispersion is in 

liquid state and a low-shear plateau is observed for the viscosity. Increasing the particle volume 

fraction, the onset of shear thinning shifts to lower shear rates and the degree of shear thinning 

increases. The hysteresis of the flow curve at φ=0.44 indicates thixotropic behaviour, which is 

due to the shear-induced dissociation and consequent recovery of sample structure. The sample 

structure at this particle concentration is associated with coexisting liquid and gel-like domains. 

This is the transition two phase region before the gel-like state. For particle volume fractions 

above φmax, exp dispersions are in the crystalline or gel like state and show shear thinning 

behaviour in the whole shear rate range investigated. On the other hand the thixotropy vanishes 

due to the dense particle packing. 
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[Fig_012] 

Figure 1.12 Viscosity as a function of increasing (down) and decreasing (up) shear rate for 

polystyrene/acrylate dispersion measured at various particle volume fractions. The downward 

arrow indicates the viscosity measurement with increasing the shear rate and the upward arrow 

indicates the consequent measurement at gradually decreasing shear rates. 

At sufficiently high shear rates hydrodynamic interactions become dominant and can 

overcome repulsion forces so that particles approach each other closer and aeff decreases. Charge 

stabilized dispersions show a strong shear thinning behavior until viscosity is close to that 

expected for hard spheres, i.e. independent of particle size and ionic strength. This is true for the 

high shear viscosity η∞ as well as the high frequency viscosityη′∞. Note that these quantities 

correspond to different microstructures and η∞ is always larger than η′∞. The Cox-Merz rule 

states: 
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[eq_039] 

Equation 1.39  

( ) ( )ωηγη *=  for ωγ =  

 

However, it is valid only at low shear rates and/or low particle loading. 

The linear viscoelastic properties of electrostatically stabilized suspensions drastically change 

from predominantly viscous to highly elastic at the liquid/crystalline phase transition. This is 

illustrated in Figure 1.13 , showing the frequency dependence of the elastic modulus G′ and 

viscous modulus G′′ for three different particle volume fractions. At intermediate volume 

fractions the dispersion shows a viscoelastic behavior described by the Maxwell model, while in 

the gel state the G′ and G′′ become frequency independent. The G′ plateau modulus is assigned 

as G0 and increases by orders of magnitude within a narrow concentration range. The 

dependence of G0 on φ can be described by the scaling law: 

[eq_040] 

Equation 1.40  
nkG φ=0  

 

where k is a prefactor and n is an exponent corresponding to the slope of the line in log-log plots 

of G0 versus φ. The power-law exponent n depends strongly on the range of repulsion i.e. on the 

Debye-Huckel constant κ-1. 
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[Fig_013] 

Figure 1.13  G′ and G′′ as a function of angular frequency ω for a concentrated electrostatically 

stabilized dispersion at volume fractions around the phase transition region. The field symbols 

denote G′ while the open symbols G′′ 

Let us now consider the rheology of sterically stabilized dispersions. Particle repulsion in 

sterically stabilized dispersions results from the interactions between polymer chains or 

surfactant molecules adsorbed or grafted onto the particle surface. The formation of hairy surface 

layer gives rise to an increase in the hydrodynamic particle radius and dispersions zero-shear 

viscosity, in a similar way as in the case of charged particles. Hence, the rheological behavior of 

such systems is similar to that of hard spheres with aeff= a+L. Decreasing the particle radius a the 

thickness of the stabilizing layer L can contributes significantly to the effective volume φeff.and 

thus give rise to the viscosity. When using polyelectrolytes or ionic stabilizers with weak-type 

functional acid groups, the thickness of the stabilizer layer L depends on the ionic strength and 

pH of the dispersion medium, which determine the degree of dissociation and range of 

electrostatic interactions among the functional acid groups. The steric repulsion provided by this 

surface layer, which is activated and tuned by short range electrostatic interactions is called 

electrosteric stabilization and is the dominating mechanism for stabilization of commercial 

polymer dispersions. As was the case for charged particles, electrosterically stabilized 

dispersions show universal scaling independent of ionic strength, pH or core particle size, but 

here the data have to be re-scaled and plotted versus φeff not only for the zero-shear viscosity η0 

but also for the high shear viscosity η∞ and high frequency viscosity η′∞. However the hairy 

particles show the same η′∞ as predicted for hard sphere dispersions up to φeff = 0.5. Beyond this 

effective volume fraction strong deviations are observed due to the permeability and 

interpenetration of the stabilizing layers22

1.4.2.2   Attractive Particles 

. 

Attractive particle interaction either result in large compact aggregates, which rapidly phase 

separate, or in loose aggregates with fractal structure. Only the latter case is relevant for the 

rheology of colloidal dispersions. Loose aggregates immobilize water leading to larger effective 

volume fraction φeff and thus to an increase in the zero-shear viscosity. When the shear rate is 

increased the flocs gradually break-down resulting in a strong shear thinning. At high enough 

shear rates the aggregates breack-up into primary particles or cannot break-down further and the 

viscosity attains its minimum value, a pseudo-Newtonian region is reached. Aggregate break-up 
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in dilute dispersions can be estimated by the balance between hydrodynamic forces 

γπη 

26 aF sH =  and the van der Waals force 212haAF HvdW = (where AH is the Hamaker constant 

and h interparticle separation distance). Hence, in the colloidal domain (a < 1µm) very large 

shear rates are required to break-up the aggregates into primary particles. 

The fractal structure of aggregates is characterized by the fractal dimension Df which 

describes the mass density of the flocs and is controlled by the aggregation mechanism. Note the 

lower the Df value, more open the aggregate structure becomes. Reaction limited- and flow 

induced aggregation lead to denser structures, while diffusion limited aggregation results in low 

Df values, as confirmed by computer simulation and scattering experiments232425

Depending on the magnitude and balance of interaction forces as well as the presence of 

additives, different flocculation mechanisms can be recognized: 

. Above a critical 

volume fraction fractal aggregates can interconnect forming sample-spanning network, which 

results in a highly elastic gel-like behavior (G′ > G′′) and an apparent yield stress. The rest 

structure usually ruptures at very small stress levels and viscosity progressively decreases with 

increasing applied stress. The shear induced break-down and recovery of flocs require a finite 

amount of time resulting in a thixotropic behavior. Recovery of aggregate structure is forced by 

the Brownian motion and attractive forces and thus the rate of thixotropic recovery depends on 

particle size. 

• Flocculation of charged particles can be caused by increasing the ionic strength and or 

lowering the surface charge. Particles can then aggregate in the primary or the secondary 

minimum of the potential energy curve. The latter gives rise to fairly week aggregates and 

a shear force can easily separate the particles again.  

• Flocculation of strerically stabilized particles depends on the thickness of stabilizing layer. 

When it is not sufficiently thick to screen the van der Waals attraction particles may 

coagulate in a shallow primary minimum. 

• Depletion flocculation results when adding non-adsorbing polymers, free to move in the 

dispersion medium. This phenomenon may be understood by considering two particles 

approaching one another in a solution of free polymer. As the gap between them becomes 

too small to contain the polymer molecules, the local osmotic conditions will cause the 

pure dispersion medium to flow out of the gap between particles leading to weak 

attraction. Attractive interactions in this case are easily tunable by size and concentration 

of added polymer. Depletion strongly affects phase behavior of concentrated dispersions 

resulting in a strong increase in low-shear viscosity and the occurrence of an apparent yield 

stress. Formation of weak aggregates by depletion aggregation can also shift the colloidal 



29/57 Rheology of disperse systems.doc 

glass transition φg to significantly higher values and this so-called re-entry phenomenon 

can be used to fluidize highly concentrated dispersions.  

• Bridging flocculation occurs when dissolving high-molecular polymers with strong affinity 

to particle surface which attach to at least two particles. Strong bridging-flocculated gels 

maybe formed at high particle volume fraction. 

• Flocculation by capillary forces; the addition of small amounts of a secondary fluid, 

immiscible with the continuous phase of the suspension, causes agglomeration due to the 

capillary bridges and creates particle networks even at low particle volume fraction. 

Investigations on the rheology of strongly flocculated gels are difficult, because of the poor 

reproducibility of sample preparation, sensitivity to shear history and preparation conditions. On 

the other hand, weak or reversible flocculation allows for breakup and re-formation of 

aggregates due to thermal forces and the structure achieves thermodynamic equilibrium.  

1.4.2.2.1   Rheology of Weakly Flocculated Gels 

To demonstrate some features of the rheology of weakly flocculated gels let us consider the 

results of the investigations of depletion flocculated suspensions and the thermoreversible 

gelation of sterically interacting particle suspensions. Figure 1.14 shows the shear rate 

dependence of the relative viscosity of colloidal dispersions of octadecyl grafted silica spheres in 

benzene (φ = 0.367) at several temperatures26. Decreasing the temperature below the theta 

temperature (316 K) weak aggregates are formed, leading to increase in viscosity and shear 

thinning behavior. 

 
 

[Fig_014] 
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Figure 1.14 Relative shear rate versus shear rate for dispersion of octadecyl grafted silica 

spheres in benzene (φ=0.367) at several temperatures: 317.28 K, 308.13 K 306.20 K, 304.17 K, 

303.16 K and 302.16 K (from bottom to top)26 

Buscall et al.27

1.15

 studied sterically stabilized acrylic copolymer particles dispersed in “white 

spirit” (mixture of high-boiling hydrocarbons). Adding non-adsorbing polyisobutylene above the 

critical free polymer concentration for depletion flocculation causes a dramatic increase in 

viscosity with increasing polymer concentration (Figure  ).  

 

[Fig_015] 

Figure 1.15 Shear stress versus relative viscosity for dispersion of acrylic copolymer particles (a 

= 157 nm) grafted with hydroxystearic acid- polymethylmethacrylat and dispersed in “white 

spirit”at volume fraction φ = 0.4 with added polyisobutene (Mw = 411000 g/mol) of different 

concentrations in weight per volume: 0.1 %, 0.4 %, 0.5 %, 0.6 %, 0.85 %, 1 % (from bottom to 

top) 27 

Weakly flocculated systems are also characterized by a yield stress. Tadros et al.28

1.16

 

investigated depletion flocculated aqueous polystyrene dispersions containing “free” 

polyethylene oxide (PEO) chains. It was found that the yield stress σy increases linearly with 

increasing PEO concentration φp and the slope of this linear dependence increases with 

increasing the particle volume fraction φ (Figure ). The following scaling relations can be 

applied to describe the particle volume fraction dependency of yield stress σy: 

[eq_041] 

Equation 1.41  
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p
y φσ ~  

 

where the power-law exponent p depends on the fractal dimension and is around 3 according to 

experimental investigations, while numerical simulations report higher values: 3.5 - 4.4, 

depending whether the aggregation is slow or rapid (Ref). 

 

[Fig_016] 

Figure 1.16 Yield stress σy versus free polymer (PEO, Mw = 20000) volume fraction φp for 

polystyrene dispersion at several particle volume fractions φ28 

Viscoelastic measurements provide a better understanding of the structure of flocculated 

dispersions. Figure 1.17 shows the elastic modulus G′of the depletion-flocculated aqueous 

polystyrene dispersions (a=77.5) as a function of the free polymer (PEO) volume fraction φp at 

several particle volume fractions. Above the critical free polymer concentration G′ increases 

with increasing φp sice the aggregates grow. G′ reaches a plateau value as soon as a sample-

spanning network is formed. Furthermore in can be seen that any given φp the elastic modulus 

G′increase with increasing particle volume fraction. Furthermore in Figure 1.17 can be seen that 

at any given φp, the elastic modulus G′increases with increasing particle volume fraction. 

 

φ 
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[Fig_017] 

Figure 1.17 The elastic modulus G′ versus free polymer (PEO, Mw = 20000) volume fraction φp 

for polystyrene dispersion (a=77.5) at three different particle volume fraction φ28. 

1.4.2.2.2   Rheology of Strongly Flocculated Gels 

As strongly aggregated suspensions are classified systems in which particles are captured in 

deep primary or secondary minimum with (-Ψmin/kBT )> 20 (where Ψmin is the minimum of 

interaction potential). Such systems are not at equilibrium and hence difficult to investigate 

experimentally. Nevertheless several studies29,30,31

[eq_042] 

 examined the rheological properties of 

strongly flocculated gels and found some typical trends for these materials. Strongly flocculated 

gels are highly elastic (G′ >> G′′) at small amplitudes and have extremely limited range of 

viscoelastic response. Above a critical amplitude γy the elastic modulus G′ rapidly decreases 

since the flocculated structure break down with applied shear. For strongly flocculated systems γc 

is much lower than for stable dispersions with repulsive interactions or for polymer melts and 

solutions. The elastic modulus G′ of strongly flocculated gels, measured in the linear viscoelastic 

range is always frequency independent, indicating inflexible gel like structure. Furthermore, G′ 

is independent of particle size but strongly depends on the particle volume fraction φ. Scaling 

laws can be applied to describe this dependence: 

Equation 1.42  
αφ~'G  

 

where the exponent α varies between 2 and 6 depending on the aggregation conditions. If 

aggregation is slow (reaction limited) dense structures are formed and gel formation sets in a 

higher particle volume fraction, correspondingly α is high. As an illustration, Figure 1.18 shows 

a log-log plot of the variation of G′ with particle volume fraction φ for polystyrene particles in 

water flocculated by adding salt (NaCl)32, well above the critical coagulation concentration 

(CCC). The exponent α found here is equal to 6, indicating dense floc structure. 
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[Fig_018] 

Figure 1.18 Elastic modulus G′ versus particle volume fraction φ for polystyrene particles in 

water flocculated by adding 0.2 mol/l NaCl32 

Strongly flocculated dispersions are very sensitive to shear and are characterized by a yield 

stress. The yield stress σy of an aggregated dispersion can be related to the adhesion force Fadh 

between two particles17: 

[eq_043] 

Equation 1.43  

)(2 φσ f
a

Fadh
y =  

 

The term Fadh/a2 is the stress per particle and the function f(φ) can be approximated as the 

number of binary contacts, i.e. f(φ) = φ2. For dense systems more elaborate models predicting 

f(φ) are available. The adhesion force is given by the derivative of the interaction potential with 

respect to the separation distance, which can be estimated from the DLVO-theory. Experimental 

studies31,32 have revealed a simple scaling for the yield stress of strongly flocculated particulate 

gels: 

[eq_044] 

Equation 1.44  
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1.4.2.2.3   Capillary Forces in Suspension Rheology 

Recently, Koos and Willenbacher33

20

 reported that reversible flocculation by capillary forces 

can dramatically change the rheological properties of dispersions. The addition of small amounts 

of a secondary fluid, immiscible with the continuous phase of the suspension, causes flocculation 

due to the capillary liquid bridges between particles and formation of sample-spanning network 

structure thus leading to a transition from predominantly viscous to gel like behavior. This 

phenomenon is observed for variety of different fluid/particle systems, independent of whether 

the primary liquid or the secondary immiscible liquid preferentially wet the solid particles. When 

the secondary fluid is the fluid creating isolated capillary bridges between particles the observed 

gel-like state is termed the “pendular” state, analogous to the pendular state in wet granular 

media (see chapter 2, in volume 1 of “Product Design and Enginiring” ). Even if the second, 

immiscible fluid does not preferentially wet the solid particles it can still attach to the particles 

and cause agglomeration due to the strong capillary force from the bulk wetting fluid. This state 

is analogous to the capillary state in wet granular media. Figure 1.19 shows the effect of the 

fraction of wetting liquid on the yield stress for both pendular and capillary state. The increase in 

yield stress is greatest in the capillary state for the aqueous polyvinyl chloride (PVC) dispersion 

with diisononyl phthalate (DINP) as a secondary fluid. In contrast, the maximum in the yield 

stress for the dispersion of Hematite particles in DINP is in the pendular state where water is the 

secondary fluid. 

 

[Fig_019] 

Figure 1.19 Yield stress versus fraction of wetting liquid S. For the aqueous PVC dispersion 

with addition of DINP the yield stress show a maximum in the capillary state. Adding water to 

the suspension of Hematite particles in DINP the yield stress shows a maximum in the pendular 

state 
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Small amplitude oscillatory shear measurements of suspension in the capillary state clearly 

demonstrate the transition between the weakly elastic, predominantly viscous to highly elastic, 

gel-like behavior with increasing the amount of secondary fluid. Figure 1.20 shows the 

frequency dependence of the complex shear modulus G* for hydrophobically modified calcium 

carbonate (Socal) particles  suspended in a silicone oil and added different amounts of water as a 

secondary fluid. Without the secondary fluid the magnitude of the complex shear modulus |G*| 

increases with increasing frequency, whereas addition only 0.2% wt. of water, the complex shear 

modulus G* becomes frequency independent. Note that this transition occurs at particle volume 

fraction as low as about 10%. 

 

[Fig_020] 

Figure 1.20 Magnitude of complex shear modulus |G*| versus frequency ω for socal particles (a 

= 800 nm, φ = 0.173) dispersed in a silicone oil adding various amounts of water. 

Compared to the van der Waals force the force due to bridges between two particles in a 

contact is much stronger and is given by: 

[eq_045] 

Equation 1.45  

θπ cos2 Γ= aFc  

 

where Γ ist he surface tension and θ is the wetting angle The magnitude of the capillary force 

depends also on the interaparticle separation and decreases with decreasing the particle volume 

fraction. 

This phenomenon has important potential industrial applications. The addition of a second 

fluid to a suspension allows for avoiding sedimentation and keeps the mixture homogeneous 
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through the formation of sample-spanning network. Furthermore, capillary forces in suspensions 

can dramatically change the rheological properties of the system, which is a reversible process 

and can be adjusted by temperature or addition of surfactant. Another field of application is as 

precursor for porous ceramics or foams. A solid PVC foam has been already produced in 

laboratory conditions, using PVC particles (φ = 0.2) dispersed in water and DINP as a secondary 

fluid33. 

1.4.2.2.4   Fluidization of Highly Concentrated Dispersions 

Highly concentrated dispersions with particle volume fraction above the colloidal glass 

transition φg behave as gel-like materials with finite plateau modulus G0. A classical method to 

shift the maximum packing fraction is by mixing of particles of different size (refer to section 

1.4.3). However, in this section we will consider an alternative concept to fluidize dense 

colloidal dispersions, based on the so called re-entry glass transition in colloidal dispersions. 

Theoretical34,35,36as well as experimental,37,38,39,40 ,41 results reveal that weak attractive 

interactions among particles, e.g. introduced by the depletion effect of non-adsorbing polymers, 

result in reversible particle clustering and thus leave space for long-range particle motion and 

macroscopic flow. Several investigations revealed that the low-shear viscosity of hard sphere-

like colloidal dispersions exhibits a minimum as the concentration of added non-adsorbing 

polymer increases at particle volume fraction close to the hard sphere glass transition42,43

39

.Eckert 

and Bartsch ,Fehler! Textmarke nicht definiert.,41 studied the glass transition dynamics of hard 

sphere-like polystyrene microgel particles with depletion attractions by means of light scattering 

experiments (DLS). They showed that increasing the attraction strength the hard sphere glass 

transition shifts to higher volume fractions up to 70 %. At higher attraction strengths the hard 

sphere glass freeze again but into another type of glass state, termed attractive 44 or bonding-

driven45 glass. This phenomenon is called re-entry glass transition.  
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[Fig_021] 

Figure 1.21 Re-entry phase diagram for binary polystyrene microgel colloidal dispersion with 

added liner polystyrene. The open symbols indicate samples in the fluid state, closed symbols 

represent the glass state, and shaded symbols denote the transition region. The dashed curve 

indicates the extrapolated location of the glass transition and the dashed vertical line shows the 

glass ransition of the microgel dispersion without free polymer.  

Figure 1.21 shows the re-entry phase diagram of binary polystyrene microgel dispersion at 

different particle volume fractions as a function of added linear polystyrene with concentration cp 

in g/l. The dashed vertical line indicates the glass transition line for the pure binary microgel 

mixture, while the dashed curve indicates the extrapolated location of the glass transition. The 

large re-entry region observed in the microscopic dynamics via DLS has been confirmed 

rheologically by Willenbacher et al.46

41

 using the same polystyrene microgel binary mixtures as 

Eckert and Bartsch . In addition, Willenbacher et al46 studied the re-entry phenomenon for the 

class of aqueous dispersions, using electrostatically stabilized hard sphere-like polystyrene-

butylacrylate dispersion as a model system. The addition of non-adsorbing depletion agent 

(linear PEO) to the aqueous dispersion resulted in fluidization of the system up to φ ≈ 0.644. The 

change in the flow curves with concentration of added PEO (Mw = 10.000 g/mol) is shown in 

Figure 1.22a for particle volume fraction φ ≈ 0.644. A sharp drop in the low-shear viscosity is 

observed while the high-shear viscosity remains unaffected. The relative viscosity at constant 

low-shear rate plotted as a function of polymer concentration Figure 1.22b shows a clear 

viscosity minimum at 8 g/l PEO concentration. At even higher polymer concentrations the 

bonding-driven glass state begins to develop and the relative viscosity increases. Willenbacher 

et46 al also demonstrated that low-shear viscosity can be reduced to the level of commercial 

dispersion with broad particle size distribution. 
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[Fig_022] 

Figure 1.22a–b a Relative viscosity as a function of shear rate for an acrylate dispersion (φ ≈ 

0.644) with different PEO (Mw = 10000 g/mol) concentration cp in g/l, b relative low-shear 

viscosity (at γ =0.01 s-1) versus the PEO concentration cp
46  

1.4.3   Effect of Particle Size Distribution 
Particle-size distribution has a strong impact on the rheology of highly concentrated 

(typically φ > 0.5) dispersions of repulsively interacting particles. Viscosity can drop by more 

than an order of magnitude when suspensions with broad size distribution are compared to those 

with narrow size distribution at the same particle volume fraction. This is attributed to the more 

efficient packing of polydisperse spheres when the size ratio χ = alarge/asmall is large, since the 

voids between large particles can be filled with smaller particles. A theoretical treatment47 

assumed no interaction between small and large particles with size ratio χ > 10, so that the small 

particles together with the solvent molecules behave as a fluid, and found that the viscosity of 

bimodal suspensions at a given total solids concentration is minimized at volume fraction of 

small particles ξs around 0.27. Experimental studies on hard-sphere like dispersions of non-

Brownian glass beads48 as well as for Brownian hard spheres49 confirmed an optimum small 

particle volume fraction ξs of about 0.3 at which a viscosity is minimized. McGeary50 extensively 

studied the geometric packing properties of multimodal suspensions of glass beads and showed 

that the most efficient particle packing can be achieved at critical size ratio χ=6.46, at which the 

small particles perfectly fit into the voids between the large ones. However, this simple 

geometrical packing argument is very unlikely, since for size ratio χ = 6.46 and fraction of small 

particles ξs = 0.25, the number ratio of small to large particles Nsmall/Nlarge ≈ 9051

49

, which means 

that the pores between large particles are much less than the number of small particles. 

Furthermore, experimental studies revealed that the phenomenon of viscosity reduction is still 

present even for size ratio χ much smaller than 6.5. Rodriguez et al  showed that for Brownian 

hard sphere dispersions with size ratio χ=1.7 viscosity goes through a minimum at ξs=0.35, but 

only at total particle loadings above φ=0.55. For suspensions of non-Brownian particles has been 

shown that viscosity reduction monotonically increases with increasing the size ratio χ and total 

particle volume fraction φ48 (see Figure 1.23 ). Furthermore, note that bimodal size distribution 

can lead to ordered superlattice structures52 or phase separation53,54. 
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[Fig_023] 

Figure 1.23 Calculated relative viscosity as a function of small particle volume fraction for a 

suspension of non-Brownian hard spheres at different size ratios. Adapted from Chong et al48  

Experimental observations suggest that viscosity is the lower the larger the particle size ratio 

is, but this is no longer valid when colloidal interactions get significant. Then adding more and 

more small particles corresponds to an increase in the effective volume fraction φeff at constant 

particle loading φ, thus leading to a monotonic increase in viscosity. Figure 1.24 shows the effect 

of particle size ratio on the viscosity of hard sphere dispersion in comparison to colloidally 

interacting particles51. For this calculations the diameter of large particles is fixed to 800 nm, 

while the size of small particles is decreased, keeping the small particle volume fraction ξs=0.25 

and total particle volume fraction φ = 0.6 constant. It can be seen that for hard sphere systems 

viscosity drops monotonically with increasing the size ratio. When colloidal interactions get 

relevant the effective volume φeff increases as the size of small particles decreases and thus 

viscosity goes through a minimum before increasing again. Typically, the viscosity minimum at 

constant volume fraction is observed for χ between 4 and 5. Note that the curves in Figure 1.24 

have been calculated according to the generalized Quemada equation55

[eq_046] 
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where η~  is a pre-factor which determine the viscosity level and depends on the shear arte, 

only51. The maximum packing fraction φmax is fully defined by the particle size distribution56 and 

the colloidal interactions are parameterized by the exponent ε ≥ 2. The exponent ε is equal to 2 in 

the hard sphere limit and increases with decreasing the mean particle size. This is attributed to 

the fact that colloidal interactions among particles get more important as the mean particle 

separation diminishes and viscosity diverges at lower volume fractions than expected for hard 

spheres. 

  

[Fig_024] 

Figure 1.24 Viscosity as a function of particle size ratio calculated according to Equation 1.46 

for large paricle raduis alarge = 400 nm, total particle concentration φ=0.6 and small particle 

volume fraction ξs=0.25. The blue curve shows the results for ε = 2, i.e. hard sphere dispersions 

and the red curve represents the results for ε as a function of average particle size. Adapted from 

Dames et al.51 

1.4.4   Shear Thickening 
Shear thickening describes the phenomenon of increasing viscosity with increasing shear rate 

or shear stress. This phenomenon has been observed for a wide variety of colloidal and non-

colloidal particle suspensions. Shear thickening becomes important at high shear rates and occurs 

beyond a critical volume fraction (see Figure 1.6). The thickening effect increases with particle 

loading and depends on the particle size, particle size distribution shape and interactions with 

other particles57

Rheological and light scattering results by Hoffman

. 
58,59suggested that the shear thickening is 

due to shear induced order-disorder transition, associated with disruption of the layered structure 

at sufficiently high shear rates and thus destabilizing the flow. Repulsive interactions are 
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assumed to stabilize the layered structure. Hence, the onset of shear thickening is related to a 

critical shear rate above which the hydrodynamic lubrication forces exceed the electrostatic 

forces and particles deviate from the alignment, which results in enhanced interparticle 

interactions and thus higher viscosity60. However the order-disorder transition model has been 

disproved by rheo-optical and small angle neutron scattering (SANS) measurements of the shear 

thickened microstructure61,62,6364. Furthermore, Chow and Zukoski65 investigated the shear 

thickening behavior of electrostatically stabilized particles in very thin rheometer gaps and found 

that the critical shear rate for shear thickening increases with increasing the gap size, indicating 

formation of gap-spanning clusters. These results suggested that the shear thickening is due to 

flow-induced formation of transient particle clusters, referred to as hydroclusters. The increase in 

viscosity is attributed to the anisotropic shape of the clusters and the enhanced effective particle 

volume fraction due to trapped solvent. The hydroclusters can collide with each other and thus 

“jam” the flow, leading to discontinuous shear thickening at a critical shear stress. If the particle 

volume fraction is not high enough, hydrocluster formation does not lead to jamming and the 

shear thickening effect is less pronounced. Formation of hydroclusters is controlled by the 

balance of hydrodynamic force needed to push particles together and the repulsive 

thermodynamic forces. This hydrocluster mechanism is in agreement with Stokesian dynamic 

simulations on hard-sphere dispersions, suggested by Bossis and Brady66,67,68

63

. Based on this 

hydrodynamic model Bender and Wagner  suggested a scaling law for the onset of shear 

thickening and showed that it scales with shear stress, not shear rate. They expressed a 

dimensionless critical stress based on two-particle force balance between hydrodynamic 

lubrication force (with mean-field correction) and Brownian force. This scaling predicted that 

shear thickening sets in at a critical shear stress σc ~ a-3, which is consistent with experimental 

data on hard sphere dispersions. On the other hand experimental results on repulsive Browninan 

particles revealed an a-2 dependence of the critical shear stress σc 
57,69 1.25 (see Figure ). This is 

explained with the strong repulsive forces, which act to resist the cluster formation. Indeed, 

considering the balance between hydrodynamic and electrostatic forces, as proposed by Boersma 

et al.60, the particle size dependence of the dimensionless critical shear stress is reduced69 but still 

fail to explain the experimental results. 
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[Fig_025] 

Figure 1.25 Critical shear stress σc versus particle radius a, for charge stabilized silica 

dispersions with various particle sizes and at different concentration φ=0.31 – 0.59. The line fits 

the power law dependence σc ~ a-2. Adapted from Maranzano and Wagner69 

Another approach to express the dynamics of hydrocluster formation is proposed by Melrose 

and Ball70

63

. They related the critical shear rate to the characteristic relaxation time for two 

particles to “decouple” due to repulsive forces. Thereby a dimensionless critical shear rate has 

been expressed relating the convection time (inversely proportional to the shear rate) to the 

characteristic relaxation time. The results of this analysis are corrected, applying the mean field 

approximation proposed by Bender and Wagner  to account for the many-body hydrodynamic 

interactions, which tend to stabilize the hydrocluster structure69. In this manner a dimensionless 

critical stress M
cσ for shear thickening has been derived: 

[eq_047] 
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( )2
2

0

2

1
2

2/3

m

m

h

h

sr

mcM
c

e
ea

ha

κ

κ

κψεπε

πσσ

−

−

+

=  

 

Here ε0 and εr are the permittivity in vacuum and the relative dielectric constant of the medium 

respectively, ψ0 is the surface potential and κ is the reciprocal Debye length. The characteristic 

separation distance hm indicates the particle separation distance at which the shear force balances 

the repulsive electrostatic force. It has been shown that the dimensionless critical shear stress 

σc / Pa 
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M
cσ scales the experimental data for electrostatically69 (see Figure 1.26) as well as sterically 

stabilized particles71

)(/ φησγ cc =

. Note that the shear thickening sets in at a critical shear stress σc almost 

independent of particle volume fraction φ, while the corresponding critical shear rate 

 decreases with increasing φ. 

Shear thickening can be suppressed or shifted to higher critical stresses by broad particle size 

distribution57. It has been shown that for bimodal mixtures with size ratio χ ≈ 3 the critical shear 

stress σc increases with increasing volume fraction of small particles ξs 63,69. 

 

[Fig_026] 

Figure 1.26 Dimensionless critical shear stress M
cσ versus particle volume fraction φ for charge 

stabilized silica dispersions with various particle sizes: 75, 150, 300, 600, 1000 nm. Adapted 

from Maranzano and Wagner69 

Particle shape can also influence the shear thickening behavior. Beazley72 demonstrated that 

anisotropic clay suspensions exhibit shear thickening behavior at lower volume fractions and the 

effect increases with increasing the aspect ratio. Bergstrom73 investigated aqueous suspensions of 

rod-shaped silicon carbide whiskers with aspect ratio rp ~ 10 and reported shear thickening 

behavior at volume fraction as low as 17%. More recently, Egres and Wagner74 investigated 

systematically the effect of particle anisotropy on the shear thickening using a poly(ethylene 

glycol) based suspensions of acicular precipitated calcium carbonate (PCC) particles with aspect 

ratio varying between 2 and 7. They found similar features of the rheological behavior of 

anisotropuc particles as for hard sphere dispersions. However two important results have been 

pointed out: the critical volume fraction for the onset of shear thickening decreases with 

increasing the aspect ratio but the critical shear stress σc is independent of the aspect ratio and 

M
cσ  
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follows the scaling laws proposed for hard sphere dispersions with size corresponding to the 

minor axis dimension. 

1.5   Rheology of Emulsions 
The rheology of emulsions exhibits many qualitative analogues to the rheology of solid 

spherical particle dispersions. Differences arise from the deformability of liquid drops, which is 

especially relevant at high shear rates and volume fraction of the disperse phase. However, even 

at low shear rates the relative viscosity of emulsions differs from that of solid sphere dispersions. 

This is due to circulation of the flow inside the droplets which leads to deformation of the 

external streamlines around the fluid spheres such that the flow is less disturbed and viscous 

dissipation is lower75

[eq_048] 

. The degree of streamline deformation depends on the viscosity ratio M: 

Equation 1.48  

s

dM
η
η

=  

 

where ηd is the viscosity of the droplet liquid. For high droplet viscosity the viscosity ratio M 

approaches infinity and the distortion of the stream lines approaches that of rigid spheres. This 

effect is measurable even in very dilute emulsions and is captured by the Taylor equation76

[eq_049] 

: 

Equation 1.49  
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which reduces to the Einstein equation (Equation 1.28) for M→∞. Taylor’s hydrodynamic theory 

assumes no deformation of droplets, which is satisfied at low enough shear rates. In typical oil-

water emulsions the interfacial tension Γ is high enough to counteract the effect of 

hydrodynamic forces and leads to fast shape relaxation even at relative high shear rates. The 

droplet relaxation time τd is given by: 
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[eq_050] 

Equation 1.50  

Γ
= s

d
aητ  

 

Mechanical deformation and rupturing of droplets occurs when the deformation time (inversely 

proportional to the shear rate) is exceeds the droplet relaxation time τd, which can be described 

by dimensionless Capillary number (see chapter 4 in volume 1 of “Product Design and 

Engineering”20) 

Experimental results on model emulsions of different viscosity ratios M, reported by Nawab 

and Mason77

1.26

 demonstrated an excellent agreement with Taylor’s hydrodynamic theory (see 

Figure ). Nawab and Mason pointed out that in some cases adsorbed surfactant layers can 

reduce the internal circulations and thereby cause an increase of intrinsic viscosity to the rigid 

sphere limit. 

 

[eq_027] 

Figure 1.27  Intrinsic viscosity versus droplet volume fraction for monodisperse emulsions of 

butyl benzoate oil droplets in different water solutions in order to vary the viscosity ratio M77 

(From Macosko, Rheology Principles, Measurements, and Applications, Copyright © 1994 John 

Wiley & Sons.) 

With increasing concentration above the Einstein limit, hydrodynamic interaction become 

significant and Taylor’s equation cannot describe the volume fraction – viscosity dependence. 

Pal 78

1.30

 has proposed a new viscosity equation for concentrated emulsions that takes into account 

the effect of viscosity ratio M and reduces to the generalized Krieger-Dougherty equation 

(Equation )when M → ∞:  
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[eq_051] 

Equation 1.51  
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Pal78 also showed that Equation 1.51 is in a good agreement with the experimental data for 

various of emulsions over a broad range of droplet volume fraction φ and viscosity ratios M. 

The effect of dispersed phase volume fraction on rheology of emulsions is less severe in 

comparison to dispersions of solid particles. Emulsions behave as Newtonian fluids up to volume 

fraction of closest packing of nondeforamble hard spheres φ ≈ 0.6. At higher concentrations 

emulsions show a strong shear thinning behavior and the effect increases with droplet volume 

fraction79

79

. Furthermore, in the high concentration limit (φ > 0.6) the effect of droplet size 

becomes significant. Reducing the droplet size viscosity of concentrated emulsions considerably 

increase and the shear thinning effect get stronger . It should be mentioned that increasing the 

volume fraction of the dispersed phase not necessarily results in a monotonic increase in 

viscosity. At critical droplet volume fraction phase inversion may occur which is accompanied 

by a drastic drop in viscosity. However emulsions are usually stabilized by surfactants adsorbed 

onto droplet surface that prevent the coalescence of droplets at contact. 

Repulsive and attractive colloidal interactions as well as droplet deformation and rupture 

during flow can cause a deviation from the hard sphere behavior of emulsions. The effect of 

repulsive droplet interactions due to surface charge or adsorbed polymer can be captured by hard 

sphere mapping (φ = φeff) similar as for repulsive solid particles. Attractive droplet interactions 

lead to flocculation and gelation analogous to attractive particle suspensions. Emulsion rheology 

can be tuned in a wide range by adding polymer thickeners or by excess surfactant providing gel-

like structure to the continuous phase, which is particularly relevant for stabilization against 

creaming. 

Emulsions can exhibit distinct viscoelastic properties even if both constituents are Newtonian 

fluids due to the contribution of the interfacial tension which oppose droplets deformation. This 

is particularly important for polymer blends, where viscosity of both components is high and 

deformed interfaces relax slowly. Various models have been established to describe the liner 

viscoelastic complex shear modulus G* of emulsions. When both phases are Newtonian the 

Oldroyd model80,81 suits: 



47/57 Rheology of disperse systems.doc 

[eq_052] 

Equation 1.52  
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with 

[eq_053] 

Equation 1.53  
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For emulsions with viscosity ratio M → ∞ droplets behave as solid-like particles and the droplet 

relaxation time is so short that ratio E/D reduces to: 

[eq_054] 

Equation 1.54  

M
M

D
E

+
+

=
1
4.0  

 

In the dilute limit with φ→0, Equation 1.52 simplifies to: 

[eq_055] 
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For emulsions where both continuous and dispersed phase are viscoelastic with frequency 

dependent complex moduli ∗
sG  and ∗

dG  respectively, the Palierne82

[eq_056] 

 model gives the following 

comlex modulus G* of the emulsions: 

Equation 1.56  
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with 

[eq_057] 

Equation 1.57  
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Kitade et al83

1.28

  investigated the viscoelastic properties of polymer blends consisting of 

polydimethylsiloxane (PDMS) and polyisoprene and demonstrated that the experimentally 

determined frequency dependence of G′ is in agreement with the Palierne model (see Figure 

). The contribution of the interfacial term results in a pronounced shoulder in the G′ (ω) 

curve in the low frequency range. Figure 1.28 shows that with increasing the pre-shear rate, 

which corresponds to a decrease of the average droplet size83, the “shoulder” in the G′ (ω) 

dependence shifts to higher frequencies. This is due to increased interfacial area and hence more 

pronounced interfacial contribution for smaller droplets. In the high frequency limit the 

interfacial terms can be ignored and G′ is determined only by the viscoelasticity of the dispersion 

medium. Hence, the Palierne emulsion model simplifies to: 

[eq_058] 

Equation 1.58  

( ) ∗∗ +−≈ ds GGG φφ1*  
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[Fig_028] 

Figure 1.28  Comparison of the Palierne model (lines) with measured G′ (ω) dependence for a 

blend of 11% polyisoprene (η0 = 60.9 Pas) in PDMS (η0 = 73.7 Pas) with Γ=3.2 mN/m, pre-

sheared at four different shear rates83 

Below a critical volume fraction φc, which can be associated with the colloidal glass 

transition or random close packing, rheology of emulsions is dominated by Brownian motion, 

hydrodynamic and colloidal interactions. Above φc droplets begin to deform and take a 

polyhedral form via compression. The so formed foam-like structure behave predominantly 

elastic. A thermodynamic model developed by Princen84 related the droplet compression to the 

osmotic pressure in the system which increases with increasing droplet volume fraction φ. When 

the osmotic pressure exceeds the Laplace pressure, Γ/a, droplets start to deform and pack more 

tightly with increasing φ. Elasticity of the system then arises from the surface tension acting to 

resist the compression (osmotic pressure). Such a highly concentrated emulsion behave as a 

linearly elastic solid with G′>G′′, independent of frequency. The plateau modulus G0 of densely 

packed emulsions strongly increases with droplet volume fraction and can be expressed as 

follows85

[eq_059] 

: 

Equation 1.59  
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where φeff accounts for the excluded volume due to repulsive forces. When φeff approaches unity 

the G0 becomes constant determined by Γ/2a. 

Densely packed emulsions with φ > φc are characterised by an apparent yield stress σy at 

which the structure ruptures. Oscillatory measurements revealed that yielding occurs at a critical 

deformation amplitude, called yield strain γy = σy/ G0, that increases linearly with increasing 

droplet volume fraction above φc
86

[eq_060] 

: 

Equation 1.60  

( )ceffy φφγ −~  

 

Figure 1.29a demonstrates this linear dependence for monodispersed emulsions having different 

droplet size. It can be seen that the volume fraction dependence of γy is independent of droplet 

size and γy reaches its minimum at φc. In contrast to the yield strain γy, the yield stress σy 

increases more severely (see Figure 1.29b). The yield stress σy scales with the Laplace pressure 

of the droplets and can be empirically fit by: 

[eq_061] 

Equation 1.61  

( )2~ ceffy φφσ −  

 

This quadratic dependence of σy on φeff is consistent with the definition σy = γy G0. and for φeff≈1 

a crude estimate holds: 

[eq_062] 

Equation 1.62  
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These experimental findings are captured by the Princes-Kiss model87

[eq_063] 

: 

Equation 1.63  
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where Y(φ) can be expressed in analytical form for two-dimensional systems, however for real 

three-dimensional emulsions is Y(φ) an empirical function. 

 

  

[Fig_029] 

Figure 1.29a–b a  Yield strain γy versus effective volume fraction φeff b  yield stress σy scaled by 

the Laplace pressure (Γ/a) versus φeff for monodispersid emulsions with droplet size: a = 250 nm 

(circles), 370 nm (triangles), 530 nm (squares) and 740 nm (diamonds)86  

 

 

Highly concentrated emulsions often do not exhibit uniform deformation even in simple 

shear flow, instead they show shear banding which can be very irregular in sense that the plane 

of deformation changes its position or that the width of the deformed region changes with time. 
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